
 C TECHNICAL REPORT 79-91

                                                                                    Library No. S-237,254

                                                                                    (IDA PAPER P-2316)

                                                                                    September 1991

INTEGRITY IN AUTOMATED
INFORMATION SYSTEMS

Prepared for

National Computer Security Center (NCSC)

by

Terry Mayfield

J. Eric Roskos

Stephen R. Welke

John M. Boone

INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311



FOREWORD
This NCSC   Technical Report,   ``Integrity in Automated Information Systems,'' is

issued by the National Computer Security Center (NCSC) under the authority of and in
accordance with   Department of Defense  (DoD)  Directive 5215.1,  ``Computer  Security
Evaluation  Center.''   This Publication contains technical observations,  opinions,  and
evidence prepared  for  individuals involved  with  computer security.

Recommendations   for   revision  to  this  publication  are encouraged and  will be
reviewed  periodically  by the NCSC. Address  all  proposals  for  revision  through
appropriate channels to:

                                       National Computer Security Center

                                       9800 Savage Road

                                       Fort George G. Meade, MD 20755-6000

                                       Attention: Chief, Standards, Criteria & Guidelines Division

Reviewed by:_________________________________ September 1991

RON S. ROSS, LTC (USA)

Chief, Standards, Criteria & Guidelines Division

Released by:_________________________________ September 1991

THOMAS R. MALARKEY

Chief, Office of Computer Security Publications and Support



TABLE OF CONTENTS
        1.  INTRODUCTION................................................................................................            1

          1.1   PURPOSE.........................................................................................................           1

          1.2   BACKGROUND..............................................................................................           1

          1.3   SCOPE...............................................................................................................           3

        2.  DEFINING INTEGRITY........................................................................................          5

          2.1   DATA INTEGRITY.........................................................................................           6

          2.2   SYSTEMS INTEGRITY...................................................................................            6

          2.3   INFORMATION SYSTEM PROTECTION GOALS...................................           7

          2.4   INTEGRITY GOALS........................................................................................           8

              2.4.1   Preventing Unauthorized Users From Making Modifications..........          8

              2.4.2   Maintaining Internal and External Consistency...................................         8

              2.4.3   Preventing Authorized Users From Making Improper Modifications....   9

          2.5   CONCEPTUAL CONSTRAINTS IMPORTANT TO INTEGRITY.................     9

              2.5.1   Adherence to a  Code of Behavior.............................................................     10

              2.5.2   Wholeness......................................................................................................      11

              2.5.3   Risk Reduction.............................................................................................       11

        3.  INTEGRITY PRINCIPLES........................................................................................      15

          3.1   IDENTITY..............................................................................................................      15

          3.2   CONSTRAINTS...................................................................................................       16

          3.3   OBLIGATION.....................................................................................................        16

          3.4   ACCOUNTABILITY............................................................................................      17

          3.5   AUTHORIZATION.............................................................................................      18

          3.6   LEAST PRIVILEGE...........................................................................................        18

          3.7   SEPARATION.....................................................................................................       19

          3.8   MONITORING...................................................................................................        20



          3.9   ALARMS.................................................................................................................     21

          3.10  NON-REVERSIBLE ACTIONS...........................................................................     21

          3.11  REVERSIBLE ACTIONS......................................................................................     22

          3.12  REDUNDANCY.....................................................................................................   22

          3.13  MINIMIZATION....................................................................................................   23

              3.13.1  Variable Minimization..................................................................................   23

              3.13.2  Data Minimization.......................................................................................    24

              3.13.3  Target Value Minimization......................................................................      24

              3.13.4  Access Time Minimization.........................................................................    24

          3.14  ROUTINE VARIATION.....................................................................................     25

          3.15  ELIMINATION OF CONCEALMENT...........................................................      25

          3.16  ACCESS DETERRENCE..................................................................................        26

        4.  INTEGRITY MECHANISMS................................................................................         27

          4.1   POLICY OF IDENTIFICATION AND AUTHENTICATION..................          29

              4.1.1   Policy of User Identification and Authentication...............................         29

              4.1.2   Policy of Originating Device Identification........................................          32

                    4.1.2.1  Mechanism of Device Identification..........................................           32

              4.1.3   Policy of Object Identification and Authentication...........................          33

                    4.1.3.1  Mechanism of Configuration Management..............................       .   37

                    4.1.3.2  Mechanism of Version Control...................................................          38

                    4.1.3.3  Mechanism of Notarization.........................................................          38

                    4.1.3.4  Mechanism of Time Stamps........................................................           39

                    4.1.3.5  Mechanism of Encryption............................................................          39

                    4.1.3.6  Mechanism of Digital Signatures...............................................           40

          4.2   POLICY OF AUTHORIZED ACTIONS......................................................          40

              4.2.1   Policy of Conditional Authorization....................................................         41



              4.2.1.1 Mechanism Conditional Enabling.................................................          41

                    4.2.1.2  Mechanism of Value Checks.........................................................         42

              4.2.2   Policy of Separation of Duties...............................................................         43

                    4.2.2.1  Mechanism of Rotation of Duties................................................         45

                    4.2.2.2  Mechanism of Supervisory Control.............................................         46

                    4.2.2.3  Mechanism of N-Person Control.................................................          47

                    4.2.2.4  Mechanism of Process Sequencing..............................................          47

          4.3   POLICY OF SEPARATION OF RESOURCES.............................................         48

              4.3.1   Policy of Address Separation..................................................................        49

                    4.3.1.1  Mechanism of Separation of Name Spaces..................................        49

                    4.3.1.2  Mechanism of Descriptors...............................................................        50

              4.3.2   Policy of Encapsulation..............................................................................       51

                    4.3.2.1  Mechanism of Abstract Data Types.................................................      52

                    4.3.2.2  Mechanism of Strong Typing............................................................      53

                    4.3.2.3  Mechanism of Domains......................................................................      54

                    4.3.2.4  Mechanism of Actors..........................................................................      54

                    4.3.2.5  Mechanism of Message Passing.......................................................       55

                    4.3.2.6 Mechanism of the Data Movement Primitives................................      56

                    4.3.2.7  Mechanism of Gates............................................................................      56

              4.3.3   Policy of Access Control.............................................................................       56

                    4.3.3.1  Mechanism of Capabilities................................................................       57

                    4.3.3.2 Mechanism of Access Control Lists..................................................       57

                    4.3.3.3  Mechanism of Access Control Triples............................................       58

                    4.3.3.4  Mechanism of Labels.........................................................................       59

          4.4   POLICY OF FAULT TOLERANCE...................................................................      60

              4.4.1   Policy of Summary Integrity Checks.........................................................     60

                    4.4.1.1  Mechanism of Transmittal Lists........................................................     60

                    4.4.1.2  Mechanism of Checksums..................................................................     61

                    4.4.1.3 Mechanism of Cryptographic Checksums........................................    61



                    4.4.1.4  Mechanism of Chained Checksums.........................................            62

                    4.4.1.5  Mechanism of the Check Digit.................................................             62

              4.4.2   Policy of Error Correction..................................................................             62

                    4.4.2.1  Mechanism of Duplication Protocols......................................             63

                    4.4.2.2  Mechanism of Handshaking Protocols...................................             63

                    4.4.2.3 Mechanism of Error Correcting Codes....................................             64

        5.  INTEGRITY MODELS AND MODEL IMPLEMENTATIONS..................             67

          5.1   INTEGRITY MODELS.................................................................................            67

              5.1.1   Biba Model...........................................................................................              67

                    5.1.1.1  Discussion of Biba......................................................................             67

                         5.1.1.1.1  Low-Water Mark Policy...................................................             69

                         5.1.1.1.2 Low-Water Mark Policy for Objects...............................             69

                         5.1.1.1.3 Low Water Mark Integrity Audit Policy........................             69

                         5.1.1.1.4  Ring Policy..........................................................................            70

                         5.1.1.1.5  Strict Integrity Policy........................................................             70

                    5.1.1.2  Analysis of Biba..........................................................................             71

              5.1.2   GOGUEN AND MESEGUER MODEL............................................             72

                   5.1.2.1 Discussion of Goguen and Meseguer.......................................             72

                         5.1.2.1.1 Ordinary State Machine Component..............................             73

                         5.1.2.1.2 Capability Machine Component.....................................              74

                         5.1.2.1.3  Capability System.............................................................             74

                    5.1.2.2  Analysis of Goguen and Meseguer........................................              75

              5.1.3   SUTHERLAND MODEL....................................................................             76

                    5.1.3.1  Discussion of Sutherland..........................................................             76

                    5.1.3.2  Analysis of Sutherland..............................................................             78

              5.1.4   CLARK AND WILSON MODEL.....................................................             78

                    5.1.4.1  Discussion of Clark and Wilson..............................................             78

                    5.1.4.2  Analysis of Clark and Wilson..................................................             80



              5.1.5   BREWER AND NASH MODEL...........................................................          82

                    5.1.5.1  Discussion of Brewer and Nash..................................................          82

                    5.1.5.2  Analysis of Brewer and Nash......................................................          85

              5.1.6   SUMMARY OF MODELS......................................................................          86

          5.2   INTEGRITY MODEL IMPLEMENTATIONS..............................................         86

              5.2.1   LIPNER IMPLEMENTATION................................................................         87

                    5.2.1.1  Discussion of Lipner.......................................................................         87

                    5.2.1.2  Analysis of Lipner...........................................................................         88

              5.2.2   BOEBERT AND KAIN IMPLEMENTATION......................................         90

                    5.2.2.1  Discussion of Boebert and Kain.....................................................        90

                    5.2.2.2  Analysis of Boebert and Kain..........................................................       91

              5.2.3   LEE AND SHOCKLEY IMPLEMENTATIONS......................................       92

                    5.2.3.1  Discussion of Lee and Shockley.......................................................      92

                    5.2.3.2  Analysis of Lee and Shockley...........................................................      93

              5.2.4   KARGER IMPLEMENTATION.................................................................      94

                    5.2.4.1  Discussion of Karger..........................................................................      94

                    5.2.4.2  Analysis of Karger..............................................................................      95

              5.2.5   JUENEMAN IMPLEMENTATION...........................................................      96

                    5.2.5.1  Discussion of Jueneman.....................................................................      96

                         5.2.5.1.1  Subject Integrity Label...............................................................     97

                         5.2.5.1.2  Data File Integrity Label...........................................................      97

                         5.2.5.1.3  Program Integrity Label............................................................      98

                    5.2.5.2  Analysis of Jueneman..........................................................................     98

              5.2.6   GONG IMPLEMENTATION.......................................................................     99

                    5.2.6.1  Discussion of Gong...............................................................................    99

                    5.2.6.2  Analysis of Gong....................................................................................  102

              5.2.7   SUMMARY OF MODEL IMPLEMENTATIONS.......................................  103

          5.3  GENERAL ANALYSIS OF MODELS AND

                MODEL IMPLEMENTATIONS..........................................................................     103



              5.3.1   Hierarchical Levels..................................................................................        104

              5.3.2   Non-hierarchical categories...................................................................        104

              5.3.3   Access Control Triples...........................................................................         104

              5.3.4   Protected Subsystems.............................................................................         105

              5.3.5   Digital Signatures/Encryption..............................................................        105

              5.3.6   Combination of Capabilities and ACLs................................................       105

              5.3.7   Summary of General Analysis...............................................................        105

        6.  CONCLUSIONS.....................................................................................................       107

          6.1   SUMMARY OF PAPER...................................................................................       107

          6.2   SIGNIFICANCE OF PAPER............................................................................      108

          6.3   FUTURE RESEARCH.......................................................................................       109

        REFERENCE LIST........................................................................................................     111

        APPENDIX  - GENERAL INTEGRITY PRINCIPLES............................................      117

        1.  TRADITIONAL DESIGN PRINCIPLES..............................................................      117

          1.1   ECONOMY OF MECHANISM......................................................................      117

          1.2   FAIL-SAFE DEFAULTS...................................................................................       118

          1.3   COMPLETE MEDIATION..............................................................................       118

          1.4   OPEN DESIGN.................................................................................................        118

          1.5   SEPARATION OF PRIVILEGE.......................................................................       118

          1.6   LEAST PRIVILEGE...........................................................................................       118

          1.7   LEAST COMMON MECHANISM.................................................................       119

          1.8   PSYCHOLOGICAL ACCEPTABILITY..........................................................       119

      2.  ADDITIONAL DESIGN PRINCIPLES....................................................................     119

          2.1   WORK FACTOR.................................................................................................     119

          2.2   COMPROMISE RECORDING.........................................................................      120



      3.  FUNCTIONAL CONTROL LEVELS..............................................................             120

          3.1   UNPROTECTED SYSTEMS.....................................................................             120

          3.2   ALL-OR-NOTHING SYSTEMS...............................................................             121

          3.3   CONTROLLED SHARING......................................................................             121

          3.4   USER-PROGRAMMED SHARING CONTROLS................................              121

          3.5   LABELLING INFORMATION...............................................................              121

        ACRONYMS........................................................................................................               123

        GLOSSARY...........................................................................................................              125

LIST OF FIGURES

        Figure 1.  Integrity Framework.........................................................................               13

        Figure 2.  Cascade Connection of Capability System....................................               74

LIST OF TABLES

TABLE 1.  Integrity Mechanisms Grouped by Policy and SubPolicy.............             28



EXECUTIVE SUMMARY

As public, private, and defense sectors of our society have become increasingly
dependent on widely used interconnected computers for carrying out critical as well as
more mundane tasks, integrity of these systems and their data has become a significant
concern. The purpose of this paper is not to motivate people to recognize the need for
integrity, but rather to motivate the use of what we know about integrity and to
stimulate more interest in research to standardize integrity properties of systems.

For some time, both integrity and confidentiality have been regarded as inherent
parts of information security. However, in the past, more emphasis has been placed on
the standardization of confidentiality properties of computer systems. This paper shows
that there is a significant amount of information available about integrity and integrity
mechanisms, and that such information can be beneficial in starting to formulate
standardizing criteria.   We have gone beyond the definition of integrity and provided
material that will be useful to system designers, criteria developers, and those
individuals trying to gain a better understanding of the concepts of data and systems
integrity. This paper provides foundational material to continue the efforts toward
developing criteria for building products that preserve and promote integrity.

We begin by discussing the difficulty of trying to provide a single definition for the
term integrity as it applies to data and systems. Integrity implies meeting a set of defined
expectations. We want a system that protects itself and its data from unauthorized or
inappropriate actions, and performs in its environment in accordance with its users'
expectations. We also expect internal data and any transformations of that data to
maintain a correct, complete and consistent correspondence to itself and to what it
represents in the external environment. Addressing these multiple views in a single
definition is difficult. We conclude that a single definition is not needed.   An operational
definition, or framework, that encompasses various views of the issue seems more
appropriate.   The resulting framework provides a means to address both data and
systems integrity and to gain an understanding of important principles that underlie
integrity. It provides a context for examining integrity preserving mechanisms and for
understanding the integrity elements that need to be included in system security
policies.

We extract a set of fundamental principles related to integrity. These are based on
our framework, a review of various written material on the topic of integrity, and an
investigation of existing mechanisms deemed to be important to preserving and
promoting integrity. These principles underlie the wide variety of both manual and
automated mechanisms that are examined. The mechanisms have been categorized to
show that they serve a relatively small set of distinct purposes or policies. Some
mechanisms that promote integrity are not documented in traditional literature and not
all of the mechanisms addressed here are implemented in computer systems. All of these
do, however, provide insight into some of the controls necessary and the types of threats
that automated integrity mechanisms must counter.   We also provide an overview of



several models and model implementations (paper studies) of integrity. These models
are still rather primitive with respect to the range of coverage suggested by examining
both data and systems integrity.   The model we found to be receiving the most attention
at this time is the Clerk-Lesion Model. Although this is not a formal mathematical
model, it provides a fresh and useful point of departure for examining issues of
integrity.

From this study, we conclude that it is possible to begin to standardize data and
systems integrity properties. Principles exist, trial policies can be formulated and
modelled, and mechanisms can be applied at various layers of abstraction within a
system.   The Institute for Defense Analyses (IDA) has initiated a follow-on study to look
at the allocation and layering of mechanisms. We also conclude that there are gaps in our
information and that the standardization process could help guide certain studies. Such
studies should include the analysis of existing interfaces and protocols to determine the
appropriate integrity interfaces or the need to design new protocols. Other
demonstration/validation studies should be conducted to show that mechanisms are
workable, interfaces are well understood, protocol concepts are valid, and standardized
criteria are testable. We conclude that criteria development efforts can occur
concurrently with the protocol and demonstration/validation studies.
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1 INTRODUCTION

1.1  PURPOSE

This paper provides a framework for examining integrity in computing and an
analytical survey of techniques that have potential to promote and preserve computer
system and data integrity. It is intended to be used as a general foundation for further
investigations into integrity and a focus for debate on those aspects of integrity related to
computer and automated information systems (AISs).

One of the specific further investigations is the development and evolution of
product evaluation criteria to assist the U.S. Government in the  acquisition of systems
that incorporate integrity preserving mechanisms. These criteria also will help guide
computer system vendors in producing systems that can be evaluated in terms of
protection features and assurance measures needed to ascertain a degree of trust in the
product's ability to promote and preserve system and data integrity.   In support of this
criteria investigation, we have provided   a   separate   document [Mayfield 1991] that
offers potential modifications to the Control Objectives contained in the Trusted
Computer System Evaluation Criteria (TCSEC), DOD 5200.28-STD [DOD 1985]. The
modifications extend the statements of the control objectives to encompass data and
systems integrity; specific criteria remain as future work.

1.2  BACKGROUND

Integrity and confidentiality are inherent parts of information security (INFOSEC).
Confidentiality, however, is addressed in greater detail than integrity by evaluation
criteria such as the TCSEC. The emphasis on confidentiality has resulted in a significant
effort at standardizing confidentiality properties of systems, without an equivalent effort
on integrity. However, this lack of standardization effort does not mean that there is a
complete lack of mechanisms for or understanding of integrity in computing systems. A
modicum of both exists. Indeed, many well-understood protection mechanisms initially
designed to preserve integrity have been adopted as standards for preserving
confidentiality. What has not been accomplished is the coherent articulation of
requirements and implementation specifications so that integrity property
standardization can evolve. There is a need now to put a significant effort on
standardizing integrity properties of systems. This paper provides a starting point.

The original impetus for this paper derives from an examination of computer
security requirements for military tactical and embedded computer systems, during
which the need for integrity criteria for military systems became apparent. As the
military has grown dependent on complex, highly interconnected computer systems,
issues of integrity have become increasingly important. In many cases, the risks related
to disclosure of information, particularly volatile information which is to be used as soon
as it is issued, may be small. On the other hand, if this information is modified between



the time it is originated and the time it is used (e.g., weapons actions based upon it are
initiated), the modified information may cause desired actions to result in failure (e.g.,
missiles on the wrong target).   When one considers the potential loss or damage to lives,
equipment, or military operations that could result when the integrity of a military
computer system is violated, it becomes more apparent why the integrity of military
computer systems can be seen to be at least as important as confidentiality.

There are many systems in which integrity may be deemed more important than
confidentiality (e.g.,   educational record systems, flight-reservation systems, medical
records systems, financial systems, insurance systems, personnel systems). While it is
important in many cases that the confidentiality of information in these types of systems
be preserved, it is of crucial importance that this information not be tampered with or
modified in unauthorized ways. Also included in this categorization of systems are
embedded computer systems. These systems are components incorporated to perform
one or more specific (usually control) functions within a larger system. They present a
more unique aspect of the importance of integrity as they may often have little or no
human interface to aid in providing for correct systems operation.   Embedded
computer   systems   are   not restricted to military weapons systems. Commercial
examples include anti-lock braking systems, aircraft avionics, automated milling
machines, radiology imaging equipment, and robotic actuator control systems.

Integrity can be viewed not only in the context of relative importance but also in the
historical context of developing protection mechanisms within computer systems. Many
protection mechanisms were developed originally to preserve integrity. Only later were
they recognized to be equally applicable to preserving confidentiality.   One of the
earliest concerns was that programs might be able to access memory (either primary
memory or secondary memory such as disks) that was not allocated to them. As soon as
systems began to allocate resources to more than one program at a time (e.g.,
multitasking, multiprogramming, and time-sharing), it became necessary to protect the
resources allocated to the concurrent execution of routines from accidentally modifying
one another.   This increased system concurrency led to a form of interleaved sharing of
the processor using two or more processor states (e.g., one for problem or user state and
a second for control or system state), as well as interrupt, privilege, and protected
address spaces implemented in hardware and software. These ``mechanisms'' became
the early foundations for ``trusted'' systems, even though they generally began wit the
intent of protecting against errors in programs rather than protecting against malicious
actions. The mechanisms were aids to help programmers debug their programs and to
protect them from their own coding errors. Since these mechanisms   were designed to
protect against accidents, by themselves or without extensions they offer little protection
against malicious attacks.

Recent efforts in addressing integrity have focused primarily on defining and
modelling integrity. These efforts have raised the importance of addressing integrity
issues and the incompleteness of the TCSEC with respect to integrity. They also have
sparked renewed interest in examining what needs to be done to achieve integrity
property standardization in computing systems. While a large portion of these efforts
has been expended on attempting to define the term integrity, the attempts have not



achieved consensus. However, many of these definitions point toward a body of
concepts that can be encompassed by the term integrity. This paper takes one step
further in that it not only proposes an operational definition of integrity, but also
provides material for moving ahead without consensus.   This is done through an
examination of various integrity principles, mechanisms, and the policies that they
support as well as an examination of a set of integrity models and model
implementations

1.3  SCOPE

Our examination of integrity takes several viewpoints. We begin in Section 2 by
looking at the issue of defining integrity. Here we build a framework or operational
definition of integrity that will serve our purpose in analyzing mechanisms that provide
integrity. This framework is derived from a number of sources, including: (1) what
people generally say they mean when they discuss having a system provide integrity, (2)
from dictionary definitions, and (3) other writings on the topic that we have interpreted
to provide both specific integrity goals and a context for data and system integrity.

In Section 3, we extract a set of fundamental principles from these goals and
contextual interpretations. Principles are the underlying basis on which policies and
their implementing mechanisms are built.   An additional set of basic protection design
principles, extracted from Saltzer & Schroeder's tutorial paper, The Protection of
Information in Computer Systems [Saltzer 1975], has been provided as an appendix for
the convenience of the reader.   These design principles apply to the general concept of
protection and, thus, are important additional considerations for standardizing integrity
preserving properties in computer systems.

Next, in Section 4, we examine a wide variety of manual and automated mechanisms
that address various problems related to integrity. Most of these mechanisms, evolving
over the course of many years, remain in use today. Several of the mechanisms intended
to promote integrity are not documented in traditional computer security literature.
Not all of the mechanisms we examine are implemented in computer systems, although
they give insight into the types of controls that need to be provided and the types of
threats that must be countered by automated integrity mechanisms. Some of the
mechanisms we examine appear primarily in embedded systems and others are found in



more familiar application environments such as accounting. The mechanisms have been
categorized to show that they serve a relatively small set of distinct purposes. We use the
term policy to describe the higher-level purpose (categorization) of a mechanism since
such a purpose generally reflects administrative courses of action devised to promote or
preserve integrity.

Independent of the mechanisms a small number of formal models has been
established with differing approaches to capturing integrity semantics. In Section 5, we
examine several models that have been proposed in the last decade to address issues of
integrity. Several paper studies have suggested implementations of these models as
possibilities for real systems. We also look at a number of these model implementations
intended to promote or preserve integrity. This examination provides us with a better
understanding of the sufficiency of coverage provided by the proposed models and
model implementations.

Finally, in Section 6, we present our study conclusions and recommend a set of
further studies that should be performed to enhance our understanding of integrity and
better enable us to standardize integrity protection properties in systems.

A reference list is provided at the end of the main body; a list of acronyms and a
glossary are provided after the appendix.

2  DEFINING INTEGRITY

Integrity is a term that does not have an agreed definition or set of definitions for use
within the INFOSEC community. The community's experience to date in trying to define
integrity provides ample evidence that it doesn't seem to be profitable to continue to try
and force a single consensus definition. Thus, we elect not to debate the merits of one
proposed definition over another. Rather, we accept that the definitions generally all
point to a single concept termed integrity.

Our position is reinforced when we refer to a dictionary; integrity has multiple
definitions [Webster 1988]. Integrity is an abstract noun. As with any abstract noun,
integrity derives more concrete meaning from the term(s) to which it is attributed and
from the relations of these terms to one another. In this case, we attribute integrity to two
separate, although interdependent, terms, i.e., data and systems. Bonyun made a similar
observation in discussing the difficulty of arriving at a consensus definition of integrity
[Bonyun 1989]. He also recognized the interdependence of the terms systems and data in
defining integrity, and submitted the proposition that ``in order to provide any measure
of assurance that the integrity of data is preserved, the integrity of the system, as a
whole, must be considered.''

Keeping this proposition in mind, we develop a conceptual framework or
operational definition which is in large part derived from the mainstream writing on the
topic and which we believe provides a clearer focus for this body of information. We
start by defining two distinct contexts of integrity in computing systems: data integrity,
which concerns the objects being processed, and systems integrity, which concerns the



behavior of the computing system in its environment. We then relate these two contexts
to a general integrity goal developed from writings on information protection. We
reinterpret this general goal into several specific integrity goals. Finally, we establish
three conceptual constraints that are important to the discussion of the preservation and
promotion of integrity. These definitions, specific goals, and conceptual constraints
provide our framework or operational definition of integrity from which we extract
integrity principles, analyze integrity mechanisms and the policies they implement, and
examine integrity models and model implementations. A diagram of this framework is
found in Figure 1 at the end of this section.

2.1  DATA INTEGRITY

Data integrity is what first comes to mind when most people speak of integrity in
computer systems. To many, it implies attributes of data such as quality, correctness,
authenticity, timeliness, accuracy, and precision. Data integrity is concerned with
preserving the meaning of information, with preserving the completeness and
consistency of its representations within the system, and with its correspondence to its
representations external to the system. It involves the successful and correct operation of
both computer hardware and software with respect to data and, where applicable, the
correct operations of the users of the computing system, e.g., data entry. Data integrity is
of primary concern in AISs that process more than one distinct type of data using the
same equipment, or that share more than one distinct group of users. It is of concern in
large scale, distributed, and networked processing systems because of the diversity and
interaction of information with which such systems must often deal, and because of the
potentially large and widespread number of users and system nodes that must interact
via such systems.

2.2  SYSTEMS INTEGRITY

Systems integrity is defined here as the successful and correct operation of
computing resources. Systems integrity is an overarching concept for computing
systems, yet on that has specific implications in embedded systems whose control is
dependent on system sensors.   Systems integrity is closely related to the domain of fault
tolerance.   This aspect of integrity often is not included in the traditional discussions of
integrity because it involves an aspect of computing, fault tolerance, that is   often
mistakenly relegated to the hardware level. Systems integrity is only superficially a
hardware issue, and is equally applicable to the AIS environment; the embedded system
simply has less user-provided fault tolerance. In this context, it also is related closely to
the issue of system safety, e.g., the safe operation of an aircraft employing embedded
computers to maintain stable flight. In an embedded system, there is usually a much



closer connection between the computing machinery and the physical, external
environment than in a command and control system or a conventional AIS. The
command and control system or conventional AIS often serves to process information
for human users to interpret, while the embedded system most often acts in a relatively
autonomous sense.

Systems integrity is related to what is traditionally called the denial of service
problem.   Denial of service covers a broad category of circumstances in which basic
system services are denied to the users. However, systems integrity is less concerned
with denial of service than with alteration of the ability of the system to perform in a
consistent and reliable manner, given an environment in which system design flaws can
be exploited to modify the operation of the system by an attacker.

For example, because an embedded system is usually very closely linked to the
environment, one of the  fundamental, but less familiar, ways in which such an attack
can be accomplished is by distorting the system's view of time. This type of attack is
nearly identical to a denial-of-service attack that interferes with the scheduling of time-
related resources provided by the computing system.   However, while denial of service
is intended to prevent a user from being able to employ a system function for its
intended purpose, time-related attacks on an embedded system can be intended to alter,
but not stop, the functioning of a system. System examples of such an attack include the
disorientation of a satellite in space or the confusing of a satellite's measurement of the
location of targets it is tracking by forcing some part of the system outside of its
scheduling design parameters. Similarly, environmental hazards or the use of sensor
countermeasures such as flares, smoke, or reflectors can cause embedded systems
employing single sensors such as infrared, laser, or radar to operate in unintended ways.

When sensors are used in combination, algorithms often are used to fuse the sensor
inputs and provide control decisions to the employing systems. The degree of
dependency on a single sensor, the amount of redundancy provided by multiple
sensors, the dominance of sensors within the algorithm, and the discontinuity of
agreement between sensors are but a few of the key facets in the design of fusion
algorithms in embedded systems. It is the potential design flaws in these systems that
we are concerned with when viewing systems from the perspective of systems integrity.

2.3  INFORMATION SYSTEM PROTECTION GOALS

Many researchers and practitioners   interested   in INFOSEC believe that the field is
concerned with three overlapping protection goals: confidentiality, integrity, and
availability. From a general review of reference material, we have broadly construed
these individual goals as having the following meanings:

1. Confidentiality denotes the goal of ensuring that information is protected
from improper disclosure.

2. Integrity denotes the goal of ensuring that data has at all times a proper
physical representation, is a proper semantic representation of informa-
tion,   and   that authorized users and information processing resources
perform correct processing operations on it.



3. Availability denotes the goal of ensuring that information and information
processing resources both remain readily accessible to their authorized us-
ers.

The above integrity goal is complete only with respect to data integrity. It remains
incomplete with respect to systems integrity. We extend it to include ensuring that the
services and resources composing the processing system are impenetrable to
unauthorized users. This extension provides for a more complete categorization of
integrity goals, since there is no other category for the protection of information
processing resources from unauthorized use, the theft of service problem. It is
recognized that this extension represents an overlap of integrity with availability.
Embedded systems require one further extension to denote the goal of consistent and
correct performance of the system within its external environment.

2.4  INTEGRITY GOALS

Using the goal previously denoted for integrity and the extensions we propose, we
reinterpret the general integrity, goal into the following specific goals in what we believe
to be the order of increasing difficulty to achieve. None of these goals can be achieved
with absolute certainty; some will respond to mechanisms known to provide some
degree of assurance and all may require additional risk reduction techniques.

2.4.1  Preventing Unauthorized Users From Making Modifications

This goal addresses both data and system resources. Unauthorized use includes the
improper access to the system, its resources and data. Unauthorized modification
includes changes to the system, its resources, and changes to the user or system data
originally stored including addition or deletion of such data. With respect to user data,
this goal is the opposite of the confidentiality requirement:   confidentiality places
restrictions on information flow out of the stored data, whereas in this goal, integrity
places restrictions on information flow into the stored data.

2.4.2  Maintaining Internal and External Consistency

This goal addresses both data and systems. It addresses self-consistency of
interdependent data and consistency of data with the real-world environment that the
data represents. Replicated and distributed data in a distributed computing system add
new complexity to maintaining internal consistency. Fulfilling a requirement for
periodic comparison of the internal data with the real-world environment it represents
would help to satisfy both the data and systems aspects of this integrity goal. The
accuracy of correspondence may require a tolerance that accounts for data input lags or
for real-world lags, but such a tolerance must not allow incremental attacks in smaller
segments than the tolerated range. Embedded systems that must rely only on their
sensors to gain knowledge of the external environment require additional specifications
to enable them to internally interpret the externally sensed data in terms of the
correctness of their systems behavior in the external world.

It is the addition of overall systems semantics that allows the embedded system to
understand the consistency   of external data with respect to systems actions.



1. As an example of internal data consistency, a file containing a monthly
summary of transactions must be consistent with the transaction records
themselves.

2. As an example of external data consistency, inventory records in an ac-
counting system must accurately reflect the inventory of merchandise on
hand. This correspondence may require controls on the external items as
well as controls on the data representing them, e.g., data entry controls.
The accuracy of correspondence may require a tolerance that accounts for
data input lags or for inventory in shipment, but not actually received.

3. As an example of systems integrity and its relationship to external consist-
ency, an increasing temperature at a cooling system sensor may be the re-
sult of a fault or an attack on the sensor (result: overlooking of the space)
or a failure of a cooling system component, e.g., freon leak (result: over-
heating of the space). In both cases, the automated thermostat (embedded
system) could be perceived as having an integrity failure unless it could
properly interpret the sensed information in the context of the thermostat's
interaction with the rest of the system, and either provide an alert of the ex-
ternal attack or failure, or provide a controlling action to counter the attack
or overcome the failure. The essential requirement is that in order to have
the system maintain a consistency of performance with its external environ-
ment, it must provided with an internal means to interpret and flexibility
to adapt to the external environment.

2.4.3  Preventing Authorized Users From Making Improper Modifications

The final goal of integrity is the most abstract, and usually involves risk reduction
methods or procedures rather than absolute checks on the part of the system.
Preventing improper modifications may involve requirements that ethical principles not
be violated; for example, an employee may be authorized to transfer funds to specific
company accounts, but should not make fraudulent or arbitrary transfers.   It is, in fact,
impossible to provide absolute ``integrity'' in this sense, so various mechanisms are
usually provided to minimize the risk of this type of integrity violation occurring.

2.5  CONCEPTUAL CONSTRAINTS IMPORTANT TO INTEGRITY

There are three conceptual constraints that are important to the discussion of
integrity. The first conceptual constraint has to do with the active entities of a system.
We use the term agents to denote users and their surrogates. Here, we relate one of the
dictionary definitions [Webster 1988] of integrity, adherence to a code of behavior, to
actions of systems and their active agents. The second conceptual constraint has to do
with the passive entities or objects of a system. Objects as used here are more general
than the storage objects as used in the TCSEC. We relate the states of the system and its
objects to a second of Webster's definitions of integrity, wholeness.   We show that the
constraint relationships between active agents and passive entities are interdependent.
We contend that the essence of integrity is in the specification of constraints and
execution adherence of the active and passive entities to the specification as the active
agent transforms the passive entity. Without specifications, one cannot judge the



integrity of an active or passive entity. The third system conceptual constraint deals with
the treatment of integrity when there can be no absolute assurance of maintaining
integrity. We relate integrity to a fundamental aspect of protection, a strategy of risk
reduction. These conceptual constraints, placed in the context of data integrity and
systems integrity and the previous discussions on integrity goals, provide the
framework for the rest of the paper.

2.5.1  Adherence to a Code of Behavior

Adherence to a code of behavior focuses on the constraints of the active agents under
examination. It is important to recognize that agents exist at different layers of
abstraction, e.g., the user, the processor, the memory management unit. Thus, the focus
on the active agents is to ensure that their actions are sanctioned or constrained so that
they cannot exceed established bounds. Any action outside of these bounds, if
attempted, must be prevented or detected prior to having a corrupting effect. Further,
humans, as active agents, are held accountable for their actions and held liable to
sanctions should such actions have a corrupting effect. One set of applied constraints are
derived from the expected states of the system or data objects involved in the actions.
Thus, the expected behaviors of the system's active agents are conditionally constrained
by the results expected in the system's or data object's states. These behavioral
constraints may be statically or dynamically conditioned.

For example, consider a processor (an active agent) stepping through an application
program (where procedural actions are conditioned or constrained) and arriving at the
conditional instruction where the range (a conditional constraint) of a data item is
checked. If the program is written with integrity in mind and the data item is ``out of
range,'' the forward progress of the processor through the applications program is halted
and an error handling program is called to allow the processor to dispatch the error.
Further progress in the application program is resumed when the error handling
program returns control of the processor back to the application program.

A second set of applied constraints are derived from the temporal domain. These
may be thought of as event constraints. Here, the active agent must perform an action or
set of actions within a specified bound of time. The actions may be sequenced or
concurrent, they may be performance constrained by rates (i.e., actions per unit of time),
activity time (e.g., start & stop), elapsed time (e.g., start + 2hrs), and by discrete time
(e.g., complete by 1:05 p.m.)

Without a set of specified constraints, there is no ``code of behavior'' to which the
active agent must adhere and, thus, the resultant states of data acted upon are
unpredictable and potentially corrupt.



2.5.2  Wholeness

Wholeness has both the sense of unimpaired condition (i.e., soundness) and being
complete and undivided (i.e., completeness) [Webster 1988].   This aspect of integrity
focuses on the incorruptibility of the objects under examination. It is important to
recognize that objects exist a different layers of abstraction, e.g., bits, words, segments,
packets, messages, programs. Thus, the focus of protection for an object is to ensure that
it can only be accessed, operated on, or entered in specified ways and that it otherwise
cannot be penetrated and its internals modified or destroyed. The constraints applied
are those derived from the expected actions of the system's active agents. There are also
constraints derived from the temporal domain. Thus, the expected states of the system or
data objects are constrained by the expected actions of the system's active agents.

For example, consider the updating of a relational database with one logical update
transaction concurrently competing with another logical update transaction for a portion
of the set of data items in the database. The expected actions for each update are based
on the constraining concepts of atomicity, i.e., that the actions of a logical transaction
shall be complete and that they shall transform each involved individual data item from
one unimpaired state to a new unimpaired state, or that they shall have the effect of not
carrying out the update at all; servility i.e., the consecutive ordering of all actions in the
logical transaction schedule; and mutual exclusion, i.e., exclusive access to a given data
item for the purpose of completing the actions of the logical transaction. The use of
mechanisms such as dependency ordering, locking, logging, and the two-phase commit
protocol enable the actions of the two transactions to complete leaving the database in a
complete and consistent state.

2.5.3  Risk Reduction

Integrity is constrained by the inability to assure absoluteness. The potential results
of actions of an adversarial attack, or the results of the integrity failure of  a human or
system component place the entire system at risk of corrupted behavior. This risk could
include complete system includes relatively assured capabilities provided by protection
mechanisms plus measures to reduce the exposure of human, system component, and
data to loss of integrity should be pursued. Such a risk reduction strategy could include
the following:

a) Containment to construct ``firewalls'' to minimize exposures and opportuni-
ties to both authorized and unauthorized individuals, e.g., minimizing, sep-
arating, and rotating data, minimizing privileges of individuals,   separat-
ing   responsibilities,   and    rotating individuals.

b) Monitors to actively observe or oversee human and system actions, to con-
trol the progress of the actions, log the actions for later review, and/or
alert other authorities of inappropriate action.

c) Sanctions to apply a higher risk (e.g., fines, loss of job, loss of professional
license, prison sentence) to the individual as compared to the potential
gain from attempting, conducting, or completing an unauthorized act.



d) Fault tolerance via redundancy, e.g., databases to preserve data or proces-
sors to preserve continued operation in an acknowledged environment of
faults. Contingency or backup operational sites are another form of redun-
dancy. Note: layered protection, or protection in depth, is a form of redun-
dancy to reduce dependency on the impenetrability of a single protection
perimeter.

e) Insurance to replace the objects or their value should they be lost or dam-
aged, e.g., fire insurance, theft insurance, and liability insurance.

(Figure 1. Not available for electronic version.)

Figure 1. Integrity Framework

3  INTEGRITY PRINCIPLES

``There is a large body of principles from among which those pertinent to any
application environment can be selected for incorporation into specific policy
statements. There is a need to identify as many as possible of those principles as might
be of sufficiently general benefit to warrant their inclusion in a list of such principles
from which the formulators of policy can select, cafeteria-style, those appropriate to their
needs'' [Courtney 1989].

In this section we discuss important underlying principles that can be used in the
design of integrity policies and their supporting or implementing mechanisms. These
principles involve not only those that we believe are fundamental to integrity, but also
those which underlie risk reduction with respect to integrity. These principles were
developed from a review of various written material on the topic of integrity, from our
framework formulated in the previous section, and by an investigation of existing
mechanisms deemed to be important to preserving and promoting integrity.

3.1  IDENTITY

The principle of identity is fundamental to integrity in that it defines ``sameness in all
that constitutes the objective reality of a thing: oneness; and is the distinguishing
character of a thing:   individuality'' [Webster 1988]. Identity allows one to distinguish
and name or designate an entity. It is through identity that relationships are attributed
and named. It is through identity that functions are distinguished and named.



Identification of users, programs, objects, and resources includes both their
classification, i.e., their membership in classes of entities that will be treated in the same
or similar manner, and their individuation, i.e., their uniqueness that will allow the
individual entities to be addressed separately. It is through the process of identity that
one can establish the specification of wholeness and a specification of behavior.

All protected systems requiring authorization   and accountability of individuals
depend on the unique identification of an individual human user. User identities need to
be protected from being assumed by others. User identities need to be authenticated to
confirm that the claimed identity has been validated by a specific protocol executed
between the system and the unique user. Further, to ensure traceability throughout the
system, the individual identity must be maintained for its entire period of activity in the
system.

Identity, through the use of conventions for naming, attributing, labelling,
abstracting, typing, and mapping, can provide for separation and control of access to
entities. Objects created within the system may require additional attribution to expand
the dimensional scope of their identity to meet specific system objectives such as
confidentiality, proof of origin, quality, or timeliness.

Another fundamental dimension of both subject and object identity is the
conveyance of identity attributes via the relationships of inheritance or replication.
Inheritance relationships include part-whole, parent-child, and type instantiation.
Attributes of interest include privileges conveyed by users to other users or to surrogate
subjects (processes acting on behalf of users), and authenticity of origin conveyed to
object copies. This aspect of identity is important to most identity-based policies for
access control, especially with respect to the propagation, review, and revocation of
privileges or object copies.

3.2  CONSTRAINTS

The principle of constraints is fundamental to integrity. A constraint denotes the state
of an active agent being checked, restricted, or compelled to perform some action. This is
central to the conceptual constraint of adherence to a code of behavior-or to what others
have termed ``expected behavior.'' Constraints establish the bounds of (integrity)
actions. When viewed from the context of objects, constraints are the transformation
restrictions   or limitations that apply in transforming an object from an initial state to a
new specified (constrained) state. Constraints establish the bounds of (integrity) states.

3.3  OBLIGATION

The binding, constraining, or commitment of an individual or an active agent to a
course of action denotes the principle of obligation. Obligation is another fundamental
principle of integrity. It is reflected in the terms duty (required tasks, conduct, service,
and functions that constitute what one must do and the manner in which it shall be
done) and responsibility (being answerable for what one does). The bound course of



action, or constraint set, is generally interpreted as always being required or mandatory
and not releasable until the course of action comes to a natural conclusion or specified
condition.   However, the sense of obligation is lost should the individual or active agent
become corrupted, i.e., the binding is broken rather than released. In this sense, an active
agent within a system, once initiated, is bound to proceed in its specified actions until it
reaches a natural or specified termination point or until the state of the system reaches a
failure or corruption point that drives the active agent away from the course of action to
which it is bound. This failure or corruption point could be the result of an individual
yielding to the temptation to perform an unauthorized action either alone or in collusion
with others. It also could be the result of faulty contact with the external environment
(e.g., undetected input error at a sensor), loss of support in the internal environment
(e.g., hardware failure), contact with corrupted objects (e.g., previously undetected
erroneous states), or contact with   another   corrupted   active agent (e.g., improper
versioning in the runtime library).

There is also a temporal dimension  to  the  course  of action to which an active agent
becomes bound.  This  dimension  binds  sequencing, sets deadlines, and establishes
bounds of performance for the active agent.   Obligation is then thought of in terms of
initiation or completion timing, e.g., eventually starting or completing, beginning or
finishing within an elapsed time, initiating or ending at a specified clock time, initiating
or completing in time for a new course of action to begin, or completing a specified
number of action cycles in a specified time. System designers, especially those involved
in real-time or deadline-driven systems, use the temporal dimension of obligation to
develop time slices for concurrent processes. Significant obligation issues in time slicing
include interprocess communication synchronization and the access of concurrent
processes to shared data.

One example of obligation is the concept of protocols, which are obligatory
conventions or courses of action for external and/or internal active entities to follow in
interacting with one another. Protocols can constrain the states of data or information to
be exchanged, a sequence of actions, or the mutual exclusion or synchronization of
concurrent asynchronous actions sharing resources or data objects.

3.4  ACCOUNTABILITY

Integrity, from the social and moral sense, implies that an individual has an
obligation to fulfill and that the individual is answerable to a higher (legal or moral)
authority who may impose sanctions on the individual who fails to adhere to the
specified code of action.   Holding the individual answerable is the principle of
accountability, from which requirements are derived to uniquely identify and
authenticate the individual, to authorize his actions within the system, to establish a



historical track or account of these actions and their effects, and to monitor or audit this
historical account for deviations from the specified code of action. The enforcement
strength of sanctions may impact some individuals more than others; simply a reminder
of what is expected and the consequences of not meeting those expectations may prove
useful in promoting and preserving integrity.

3.5  AUTHORIZATION

One aspect of binding the active entity to a course of action is that of authorization. In
essence, authorization is the right, privilege, or freedom granted by one in authority
upon another individual to act on behalf of the authority. Employing the principle of
authorization provides one means of distinguishing those actions that are allowed from
those which are not. The authority may be the leader of an organization, an
administrator acting on behalf of that leader, or the owner of a particular asset who may
grant another individual access to that asset. The authority may not only grant access to
a particular asset, but may also prescribe a specific set of constrained actions that ensue
from the access authorization. Thus, there is a binding between the individual, the
course of action, and the asset(s) to be acted upon. Attempting to perform outside of
these privilege bounds without additional authority is an             integrity violation.

Authorizations may be granted for a particular action or for a period of time;
similarly, authorization may be revoked. Authorized actions may be further constrained
by attributes of the authority, the recipient, and the object to be acted upon. For example,
in many systems, the creator of a data object becomes its owner gaining discretionary
authority to grant access, revoke granted accesses, and restrict modes of access to that
data object. Such access authorization is identity based. However, access to that object
may be constrained by certain of its attributes (identified by labels). These constraints
may reflect an augmenting rules-based access policy that mandatory checking of
corresponding attributes in the individual be accomplished in accordance with specified
rules prior to completing the access authorization.   These attributes   could include
National Security Classification Markings, other organizational sensitivity hierarchies or
compartmentation, or label attributes related  to  the  quality,  e.g.,  lower quality, ``initial
draft,'' associated with  document  transcribers vs higher quality, ``final edited draft,''
associated with document editors.

There may be a requirement in certain systems  to  provide for the dynamic enabling
or  overriding  of  authorizations. Whether or not the conditions for enabling  or
override are to be predetermined or left to the judgement of the user, explicit procedures
or specific accountable action  to invoke an enabling or bypass mechanism should be
provided.

3.6   LEAST PRIVILEGE

Privileges are legal rights granted to  an  individual, role, or subject acting on the
behalf of a user that  enable the holder of those rights to act in the system  within  the
bounds of those rights. The question  then  becomes  how  to assign the set of system
privileges  to  the  aggregates  of functions or duties that correspond to a role of a  user
or subject acting on behalf of the user. The principle of least privilege provides the



guidance for such assignment.  Essentially, the guidance is that the active entity should
operate using the minimal set of privileges  necessary  to  complete the job. The purpose
of least privilege  is  to  avoid giving an individual the ability to perform unnecessary
(and potentially harmful) actions  merely  as  a  side-effect  of granting the ability to
perform desired functions. Least privilege provides a rationale for where to install the
separation boundaries that are to be provided by various protection mechanisms.

Least privilege will allow one individual to have different levels of privilege at
different times, depending on the role and/or task being performed. It also can have the
effect of explicitly prohibiting any one individual from   performing another individual's
duties. It is a policy matter as to whether additional privileges are ``harmless'' and thus
can be granted anyway. It must be recognized that in some environments and with some
privileges, restricting the privilege because it is nominally unnecessary may
inconvenience the user. However, granting of excess privileges that potentially can be
exploited to circumvent protection, whether for integrity or confidentiality, should be
avoided whenever possible. If excess privileges must be granted, the functions requiring
those privileges should be audited to ensure accountability for execution of those
functions.

It is important that privileges and accesses not persist beyond the time that they are
required for performance of duties. This aspect of least privilege is often referred to as
timely revocation of trust. Revocation of privileges can be a rather complex issue when it
involves a subject currently acting on an object or who has made a copy of the object and
placed it in the subject's own address space.

3.7  SEPARATION

Separation refers to an intervening space established by the act of setting or keeping
something apart, making a distinction between things, or dividing something into
constituent parts. The principle of separation is employed to preserve the wholeness of
objects and a subject's adherence to a code of behavior. It is necessary to prevent objects
from colliding or interfering with one another and to prevent actions of active agents



from interfering or colluding with one another. Further, it is necessary to ensure that
objects and active agents maintain a correspondence to one another so that the actions of
one agent cannot effect the states of objects to which that agent should not have
correspondence, and so that the states of objects cannot affect the actions of agents to
which they should not have correspondence.

One example of separation is the concept of encapsulation, which is the surrounding
of a set of data, resources, or operations by an apparent shield to provide isolation, (e.g.,
isolation from interference or unspecified access). With encapsulation, the protection
perimeter has well-defined (often guarded) entry and exit points (interfaces) for those
entities which have specified access. Encapsulation, when applied in the context of
software   engineering, generally  incorporates other separation concepts associated with
principles of software design, e.g., modularity and information hiding, and employs the
mechanism of abstract data types found in many modern programming languages.

Other separation concepts include time or spatial multiplexing of shared resources,
naming distinctions via disjunctive set operators (categorical or taxonomic classification,
functional decomposition, hierarchical decomposition), and levels of indirection (virtual
mapping). All these separation concepts can be supported by the incorporation of the
principle of least privilege.

3.8  MONITORING

The ability to achieve an awareness of a condition or situation, to track the status of
an action, or to assist in the regulation of conditions or actions is the essence of the
principle of monitoring. Conceptually, monitoring combines the notion of surveillance
with those of interpretation and response. This ability requires a receiver to have
continuous or discrete access to specified source data through appropriate forms of
sensors. It also requires a specification of the condition, situation,   event,   or sequence of
events that is to be checked, observed, or regulated, and a specification of the response
that should be provided. This response specification generally includes invocation
linkages to alarms and to a family of handler processes, such as resource or device
handlers and   exception or error handling processes. In some cases, monitors will
require more privilege than other subjects within the system.

The principle of monitoring is key to enforcement of constrained actions in that the
actions must be observed, understood, and forced to comply with the imposed
constraints. When the actions are not compliant, either additional system-provided
corrective actions or alarms to request external corrective actions are invoked.



The principle of monitoring is used in mutual exclusion schemes for concurrent
processes sharing data or resources (e.g., Hoare’s Monitors) and in the operation of
interprocess communications of asynchronous processes to provide process
synchronization. Monitoring is the basis for auditing and for intrusion detection. Other
examples employing this principle include range, value, or attribute checking
mechanisms in the operating system, database management systems (DBMS), or in an
applications  program;  an  embedded feedback-loop control system, such  as  a
thermostat-driven cooling system; and the security  ``reference''  monitor in trusted
systems.

3.9   ALARMS

Whenever systems encounter an error or exception condition that might cause the
system to behave incorrectly  with respect to the environment (an integrity failure), the
system designer should incorporate the principle of  alarms  to alert the human operator
or  individuals  in  the  external environment to the unmanageable condition.  This  fact
mandates a careful analysis of not only the internal aspects of system, but also an
analysis of possible influences from the external environment. Further, the designer
must not only consider the alarms, but also their sufficiency.

Alarms must be designed such that they are sufficient to handle all possible alarm
conditions. For example, if a small field on a display is allocated to displaying all alarm
conditions, and only one alarm condition may be displayed at once, a minor alarm (such
as a low-power alarm) may hide a major alarm (such as indication of intrusion). Thus, if
an intruder could artificially generate a low-power condition, he could hide the alarm
indicating an unauthorized access.

Alarm sufficiency is a technical design issue which, if overlooked, can have serious
impact. It must be required that alarms not be able to mask one another. While there
may not be room for all alarm messages to be displayed at once, an indicator of the
distinct alarm conditions must be given so that the user does not mistakenly believe that
an ``alarm present'' indicator refers to a less severe condition than the alarm actually
involved. In general, a single indicator should not group several events under the same
alarm message. The central concepts here are that alarms must always reflect an accurate
indication of the true status of events and alarm messages must always be visible.



3.10 NON-REVERSIBLE ACTIONS

Non-reversible actions can prevent the effect of an action from later being hidden or
undone.   Non-reversible actions support the principle of accountability as well as
address a unique set of problems, i.e., emergency revocations or emergency destruction.
Non-reversible actions are in general, simply a type of restriction on privilege. Thus, the
principle can often be implemented using mechanisms intended for granting privileges.
For example, a non-reversible write operation can be provided by giving a user write
access but no other access to an object. Likewise, an emergency destruction operation
can be provided, at least in the abstract, by giving a user ``destroy'' permission but not
``create'' permission on an object.

``Write-once'' media provide one example of the use of this principle. These media
are useful when the integrity concern is that the users not be able to later modify data
they have created. Creation of audit records is another example employing this principle
in which users may be allowed to write data, but then not modify the written data to
prevent users from erasing evidence of their actions. Disposable locks used on shipping
containers (which can only be locked once and cannot be reused) are yet another
example of this principle's use.

3.11  REVERSIBLE ACTIONS

The ability to recognize an erroneous action or condition that would corrupt the
system if actions that depend on the erroneous conditional state were allowed to
continue often establishes the need to back out the erroneous action or ``undo'' the
condition. This is the principle of reversible actions. System designers most often
incorporate this principle at the user interface, e.g., in text editors, where a user may
readily notice keying errors or command errors and reverse them prior to their having a
detrimental and not easily reversible or non-reversible effect on the object state. This
principle is also used to support atomicity in database transaction processing through
the protocol of ``rulebook,'' which undoes the portion of a transaction already
accomplished when the entire transaction cannot be accomplished. Such reversible
actions are key to leaving the database in a complete and unimpaired state.

3.12 REDUNDANCY

Redundancy in computer systems is a risk-reducing principle that involves the
duplication of hardware, software, information, or time to detect the failure of a single
duplicate component and to continue to obtain correct results despite the failure
[Johnson 1989]. Redundant processing is commonly used in fault-tolerance applications.
The same processing is performed by more than one process, and the results are
compared to ensure that they match. The need for redundancy varies depending on the
application. Redundant processing is commonly used in the implementation of critical
systems in which a need for high reliability exists. Examples include multiply redundant
processors in avionics systems, and traditional accounting systems in which auditors



reproduce the results of accountants to verify the correctness of their results. In
situations where a system may be subjected to adverse conditions, such as on the
battlefield or hazardous environment, or in systems which may be subject to an adve-
rsarial attack that is attempting to disable operations controlled by the system,
redundancy may be essential. Thus, it may be desirable to require it for certain systems.

 Hardware redundancy is the most familiar type of redundancy, and involves
duplicating hardware components.   Software redundancy involves adding software
beyond what is necessary for basic operation to check that the basic operations being
performed are correct. N-version programming in which different teams provide unique
versions of the same application program vs replicated versions is one example of
software redundancy. The efficacy of software redundancy to support correct operations
remains an open issue. For example, it has been shown that n-version programming
teams tend to have difficulty with the identical hard problems of an application [Knight
1986].

Information redundancy involves duplication of information. Duplicate copies of
information are maintained and/or processed, so that failures can be detected by
comparing the duplicated information. To further assist in detection of failures, the two
copies of information may be represented in different ways, (e.g., parity bits or cyclic
redundancy codes). By exchanging bit positions of individual data bits in a byte or word,
or by complementing the bits of all data, failures such as those that modify a specific bit
position in a byte or word, or which force specific bits to always be zero or one, can be
detected.

Time redundancy involves repeating an operation at several separated points in
time, (e.g., resenting a message that was transmitted with errors). While this approach
will not detect constant, persistent failures that always cause an operation to fail in the
same way, it can often detect intermittent or transient failures that only affect a
subset            of the repeated operations.

3.13  MINIMIZATION

Minimization is a risk-reducing principle that supports integrity by containing the
exposure of data or limiting opportunities to violate integrity. It is applicable to the data
that must be changed (variable minimization and the more general case, data
minimization), to the value of information contained in a single location in the system
(target value minimization), to the access time a user has to the system or specific data
(access time minimization), and to the vulnerabilities of scheduling (scheduling
regularity minimization). Each application is discussed in more             detail in the
following sections.



3.13.1 Variable Minimization

The ability of a subject to violate integrity is limited to that data to which a subject
has access. Thus, limiting the number of variables which the user is allowed to change
can be used to reduce opportunities for unauthorized modification or manipulation of a
system. This principle of variable minimization is analogous to least privilege. Least
privilege is usually used to describe restrictions on actions a subject is allowed to
perform, while variable minimization involves limiting the number of changeable data
to which a subject has access.

For example, a subject may be authorized to transmit messages via a
communications system, but the messages may be in a fixed format, or limited to a small
number of fixed messages in which the subject can fill in only specific fields. Thus, a
subject may be allowed to say ``fire type X missile on coordinates __, __'' but may not be
allowed to substitute missile type Y for missile type X.

3.13.2 Data Minimization

Variable minimization generalizes to the principle of data minimization, in which the
standardized parts of the message or data are replaced by a much shorter code.   Thus
``Fire missile'' might be replaced with the digit ``1'', and ``on coordinates'' might be
eliminated altogether, giving a message of the form

1 X ___ ___

where ___ ___ is replaced by the coordinates. The shortened forms of standardized
messages or phrases are sometimes called brevity codes. When implemented in a
computer system, integrity can be further enhanced by providing menu options or
function keys by which the operator specifies the standardized message, thus reducing
the potential for error in writing the code. On the other hand, as these codes become
shorter, there is an increased likelihood of spurious noise or errors generating an
unintentional valid message.

3.13.3  Target Value Minimization

The threat of attack on a system can be reduced by minimizing target value. This
practice involves minimizing the benefits of attack on a given system, for example, by
avoiding storing valuable data on exposed systems when it can be reasonably retrieved
from a protected site on an as-needed basis. Distributing functionality among subjects is
another means of minimizing target value and, thus, reduces vulnerability. Highly
distributed systems use this approach, in which any one processing element is of little
importance, and the system is sufficiently widely distributed that access to enough
processing elements to have major impact is not feasible.



3.13.4 Access Time Minimization

Access time minimization is a risk-reducing principle that attempts to avoid
prolonging access time to specific data or to the system beyond what is needed to carry
out requisite functionality. Minimizing access time reduces the opportunity for abuse.
Timeouts for inactivity, rotation, and binding of access to ``normal'' or specified working
hours are variations of this approach. This principle can serve distinct integrity
functions, particularly in the case of more analytically oriented users of data.

3.14  ROUTINE VARIATION

It is desirable to avoid scheduling vulnerabilities, in which time-dependent
vulnerabilities can become known, by employing the risk-reducing principle of routine
variation. For example, if audits are scheduled at regular times, a bank employee that is
capable of successfully subverting other controls may know exactly when to abscond
with bank funds allowing sufficient time to cover up the theft or to make a safe getaway.
Similarly, if communications are known to occur at specific times, synchronized with a
master clock, an adversary is enabled to concentrate efforts for attack on the known
periods of activity. The adversary, for instance, could degrade performance of a radio-
based network by jamming the frequencies in use at known transmission times.

3.15  ELIMINATION OF CONCEALMENT

If a system contains structures that allow concealment of integrity-violating devices,
the risk of undetected access is increased. This fact applies not only to physical
concealment (such as places to locate undetected hardware devices), but it applies also
to software concealment. Software concealment includes places such as large, poorly
structured code that allows Trojan horse or virus code to be inserted without detection,
and features of elaborate and complex command languages where ``back door''
command sequences may be hidden without significant risk of accidental or routine
discovery during normal usage of the system.

The ``debug'' feature used by the Internet Worm in 1988 is an example of software
concealment. ``Debug'' was part of a large electronic-mail program called ``sendmail.''
The code for the ``sendmail'' program was so large and its command structure so
complex that few people other than the implementer of the ``debug'' feature knew of its
existence. The feature was further concealed by the very limited documentation of the
``sendmail'' program in proportion to its complexity, and by the fact that its command
language and syntax were so obscure that guessing the undocumented command was
unlikely.



The problem concerning this feature was that the large, poorly structured code of
``sendmail'' made it easy to hide a security vulnerability from systems security
personnel performing a systematic search for security vulnerabilities, while not hiding it
sufficiently from those who could exploit it. If the proportion of man-hours spent
searching for security vulnerabilities during a security evaluation is small in proportion
to the number of man-hours spent searching for vulnerabilities in order to exploit them,
code whose complexity aids the concealment of security vulnerabilities is more likely to
result in an actual breach of security.

3.16 ACCESS DETERRENCE

The risk-reducing principle of access deterrence is employed in mechanisms that
discourage rather than prevent access. These mechanisms are useful in certain
situations. For example, a system that makes an unpleasant and distracting noise when
an unauthorized access attempt is first detected may reduce the ability of an adversary
to concentrate on attacking the system.   When used on a battery-powered system in the
field, such a device could also serve to disable the system by discharging the system's
batteries if the deterrent device is not deactivated within a short period of time.

A conventional intrusion alarm siren is an example of an access deterrent. They are a
deterrent rather than an absolute mechanism.   Devices which   produce   unpleasant by-
products while in operation function similarly, since they discourage tampering with
devices during or after operation. An example is the water-activated battery used in
some disposable meteorological equipment in the early 1970s. An unpleasant smelling
material was left inside of the battery compartment, thus discouraging persons who
found the discarded equipment from trying to reactivate the radio transmitter by
replacing the battery. Clearly, use of such mechanisms is limited to unusual conditions.

4  INTEGRITY MECHANISMS

In this section, we examine a wide variety of manual and automated mechanisms
that address various problems related to integrity. Most of these mechanisms, evolving
over the course of many years, remain in use today. Not all of the mechanisms we
examine are implemented in computer systems. These non-automated mechanisms
were included in our study because they give insight into what types of controls need to
be provided and the types of threats which must be countered by automated integrity
mechanisms.   Also, since it is impossible to predict what functions can or will be
automated in the future, we felt that it would be more productive to examine integrity
mechanisms in general, rather than to limit our study to currently automated
mechanisms. No single mechanism provides the solution to integrity problems, and
certain mechanisms may not be appropriate for certain systems. Rather, each mechanism
can increase integrity protection for systems that satisfy the assumptions identified in
the respective sections.



The mechanisms have been categorized to show that they serve a relatively small set
of distinct purposes.   We use the term policy to describe the higher-level purpose of a
mechanism. In [NCSC 1988], security policy is defined as the set of laws, rules, and
practices that regulates how an organization manages, protects, and distributes sensitive
information. Our usage of the term ``policy'' is intended to be narrower than its
generally accepted usage.   We use this term to describe administrative courses of action
which characterize a group of mechanisms in promoting or preserving integrity. The
relationship among mechanisms grouped under a policy is a common, abstract course of
action which addresses one facet of integrity. For example, fault tolerance (discussed in
Section 4.4) is an important aspect of integrity protection for a wide array of
applications, and can be provided by a variety of mechanisms. Table 1 is a summary of
the policies and corresponding mechanisms identified in this chapter.

(TABLE 1 not available for electronic version.)

TABLE 1. Integrity Mechanisms Grouped by Policy and Sub-Policy

4.1  POLICY OF IDENTIFICATION AND AUTHENTICATION

Identification and authentication (I&A) are elements of a supporting policy required
for integrity, just as for confidentiality. In order to enforce access controls it is necessary
to uniquely identify with confidence who is attempting access. Likewise, when new data
is created it is necessary to identify the creator of the data in order to assign any access
control attributes based on the data's origin, such as ownership, hierarchical ``quality''
measures, or categories reflecting specialized knowledge on which the data may be
based.

The prevalent understanding and discourse on I&A deals primarily with what we
have termed ``user I&A.'' However, there are corresponding identification (and
authentication) concerns for other entities, such as devices and objects, that must be
voiced to address this topic in full generality. Since the underlying principles of user
I&A can  be applied equally as well to a variety of entities, the traditional view should be
extended  to  include  these  entities which have not previously been associated with
I&A.   Thus, while we will  emphasize  user  I&A,  we  are  motivated  to include a
discussion of I&A for devices and objects as well. Our discussion of this policy is not
meant to be a  treatise on I&A mechanisms, but rather to highlight some I&A concerns
with respect to integrity.



4.1.1 Policy of User Identification and Authentication

There exists a wide range of user I&A mechanisms in use today, including:
passwords,  biometric  devices,  behavior analysis, and identification badges.  We  will
not  discuss each of these mechanisms separately, as the purposes of  all these
mechanisms are the same:  (1) the identity of an individual needs to be established in
order to enforce  policies which relate to those individuals,  (2)  the  identification needs
to be established with assurance that  the  individual is whom he claims to be, and (3) the
activity of  the  individual needs to be captured for accountability.  Our discussion will
instead focus on the general types  of  mechanisms which are commonly employed and
the issues  related  to  the use of each of these types of mechanisms for user I&A.

In order to be effective, I&A mechanisms must  uniquely and unforgeably identify an
individual.  Traditionally, user I&A is based on the use of ``something you  know,''
``something you are'' (variably, ``something  you  can  do''),  or ``something you have.''
Both  ``something  you  know''  and ``something you have'' are limited in effectiveness
by  the fact that they are only associated with a person by  possession.  A person
possesses  knowledge  or  some  identifying object, but both of these can be acquired by
someone wishing to pose as that individual.  Each  approach  has  advantages and
disadvantages.  What distinguishes these two  approaches is how effectively each type
of authentication item  can  be protected.

The principal weakness of  ``something  you  know''  is that it may be duplicated. Not
only  is  it  sometimes  very easy to learn something someone else knows, but  it  may  be
possible to guess it. Because ``something you know'' can  be readily retained and
reproduced by humans, no special tools, skills, or equipment are  generally  required  to
duplicate this type of authentication item.  But ease  of  duplication is also an advantage
of this  type  of  authentication  item because such information tends to be easily
represented  to the trusted computing base (TCB) without special  equipment. Any
authentication data ultimately must be encoded, in  some form, in the TCB's
authentication database; in this sense, a ``copy'' of the information has to be kept  by  the
TCB  in order to be usable in authentication.  Since ``something you know'' can usually
be directly represented  as  a  character string, it is easy to store for later use by the TCB.

Although easy to copy, if  ``something  you  know''  is genuinely unique, such as a
unique nonsense word or  number, it may be easier to  guard  than  a  physical  object.
This advantage results from the fact that an  item  of  knowledge normally is fully in the
possession of the person it identifies at all times.  Unlike a key,  card,  or  other  device,
``something you know'' cannot be  stolen  while  temporarily left sitting on a desk,
cannot accidentally fall  out  of  a pocket, and in many  cases  cannot  be  forcefully
acquired unless the person stealing it has a way of verifying at  the time that it is correct.



However, poor  security  practices such as writing one's password down can  negate  the
advantages of using this technique.  ``Something  you  know''  is also inherently
vulnerable to interception at its  point  of entry into the system.  The ease of duplication
always makes ``something you know'' an imperfect form of  authentication, and it is
subject to conscientious protection of information for its effectiveness.

By comparison, the major strength  of  ``something  you have'' lies in its difficulty of
duplication.   ``Something you know'' is, literally speaking, an example of ``something
you have,'' so when we speak of ``something  you  have''  we will by convention mean a
physical  object  rather  than  an item of knowledge.  While such objects require  more
effort to guard from theft, they can be made using  special  equipment or procedures that
are  generally  unavailable  to  the population which poses a threat to the system.   The
intent is to make  duplication  of  I&A  objects  too  costly  with respect to whatever is to
be gained by  falsifying  the  I&A objects. This fact discourages duplication, though  it
does not  necessarily  prevent  duplication   by   a   determined intruder.

The third type of authentication item, ``something  you are,'' is much stronger than
the first two.  After all,  the goal of authentication is to verify  ``who  you  are,''  and
``something you are'' is very closely  tied  to  this  goal. But, there are also problems with
this type  of  authentication.  A major obstacle is the difficulty of building  cost-effective
peripherals that  can  obtain  a  complete  enough sample of ``something you are'' to
entirely distinguish one individual  from  another.  Cost  is  also  a  factor in identifying
``something you  have,'' but the  authentication item  itself can usually be  designed  to
simplify identification by the TCB.  ``Something you are'' cannot usually  be easily
encoded by conventional computer peripherals.  It may be relatively  easy  to  build
devices  that  confirm  that someone has some distinguishing features, such as weight  or
finger length.  However, the cost of peripherals which  have the  ability  to  detect
additional   detail  required  to completely  distinguish  one  person  from  another  can
be substantially greater.

Fortunately, not everything about a person is  required for an adequately unique
identification.  Specific  methods, such as fingerprinting or retinal  scans,  may  be  used
to reduce costs in comparison to a total examination of all  of a person's physical
attributes.   Yet,  even  these  methods incur greater costs  than  the  use  of  a  password,
which requires no additional hardware at all.   Furthermore,  such methods are not
guaranteed  to  be  infallible:   identical twins, for instance, would not  be  distinguishable
by  DNA readers, and might not be distinguishable by any other  specific tests of
physical characteristics.  In the  hypothetical case of entirely identical twins,  the  two
individuals might be solely distinguished by things in  the  ``something you know''
category.



It may  sometimes  be  useful  to  distinguish  between ``something you are'' and
``something you can do.'' Examples include an individual's speech, writing, or keystroke
dynamics, which might uniquely authenticate a particular individual's identity.
Obviously the strength of this  approach  is directly related to how well such a
mechanism  can  distinguish ``unique'' and ``authentic'' behavior.  For  instance, the
mechanism might not be able to distinguish  between  two very rapid typists, or perhaps
a  speech-recognition  mechanism could be ``spoofed'' by a high  fidelity  recording  of
someone's voice.

Other refinements of particular authentication  methods may strengthen the
mechanism while increasing costs in terms of  additional  performance  or  management
overhead.   For example, the requirement for one-time passwords places  some
additional constraints on the user and the mechanism, but is very effective in dealing
with  the  problem  of  reuse  or ``playback'' of  authentication  information.
Nonetheless, simple mechanisms (e.g., a ``standard'' password  mechanism) can be both
effective and efficient in specific applications and environments.

Thus, not only are there cost and feasibility tradeoffs between the  various
authentication  methods,  but  several methods may  be  required  to  give  adequate
certainty  of authentication, which  at  the  most  theoretical  level  is always subject to
some amount of error. A common concern for all I&A mechanisms is the degree of
assurance which must  be assumed regarding the facts that the mechanism  is  actually
communicating with a bona fide user and that such communication has been neither
intercepted nor tampered with. Additional measures such  as  physically  securing
communication lines and complementing an I&A mechanism with trusted path features
can  substantially  increase the assurance of authentication.

The need for user I&A is essential for  integrity  when the permitted operations or
accesses  vary  among  different individuals.  Without identification, it is not possible  to
know which user a given subject represents, and thus  it  is not   possible   to   determine
access   rights.   Without authentication, it is not possible to verify that  a  user's stated
identification accurately reflects the  user's  identity.  I&A policies and mechanisms play
a  fundamental  part in supporting most other protection policies. As  a  result, the
protection and integrity of  the  I&A  mechanism(s)  and related data is essential.

4.1.2 Policy of Originating Device Identification

One possible extension to I&A is the need for originating device identification.
Particularly in the battlefield, where it must be expected that a certain number  of
devices will be captured, it is essential that  it  be  possible  to uniquely identify each
device in order to  distinguish  captured (and thus untrusted)  devices  from  those
which  are still trusted.  Terminal units may be assigned  to  specific groups in the field,



and since the risk of capture of  these devices must be considered, unique hardwired
identification of each device is desirable.  This identification  mechanism can be
protected against  tampering  and  substitution,  for example, by a mechanism that
destroys the terminal  unit  or one of the unit's critical subcomponents (such as
encryption keys) if the unit is physically accessed.

The authentication issue is  different  for  device  vs human-user identification.  A
problem with human-user  identification is that many of the identification mechanisms
are based on something the user  knows  (an  identifier  string) which must be further
authenticated.  In  the  case  of  the device with a hardwired identifier, the identifier  is
part of ``what the device is,'' thus reducing the  authentication burden: the concern then
focuses on what user  is  accessing the known device.

4.1.2.1 Mechanism of Device Identification

In traditional systems, devices are uniquely identified primarily to allow them to be
separately addressed.  In  the commercial environment, the need for  unique
identification has become an issue due to the desire to limit software  use to specifically
licensed machines.  The use of ``serial number'' read-only memories (ROMs)  or  similar
mechanisms  is being increasingly used for this purpose.

Where security is concerned, device identification must be unforgeable to the extent
possible to prevent a user from easily changing a device to masquerade  as  another.   In
a hostile environment, a conventional identifier  ROM  is  not sufficient, since it may be
easily replaced.  Any  identification  mechanism that leaves signal and control lines
exposed to tampering may allow the enemy to easily modify  the  identifier,  depending
on  the architecture  of the device interface.  For example, if data lines  beyond  the
device  select  logic are  exposed,  the identifier could  be modified by simply grounding
or cutting the data lines.  If the system bus is exposed and the device addressing
mechanism is known, identifier  modification  can be  accomplished  with  greater
difficulty  by  building  a clip-on  device  that  monitors address  lines  for the  ROM
address and then  drives  the bus  data lines to the desired identifier values.

For this reason, it is recommended that the  data  path between the identifier ROM
and the hardware that accesses it be protected from access.  This path could be  protected
by locating the ROM on the same integrated circuit (IC) as  the related processor circuits,
and by isolating  the  processor from the external bus while the ROM is being read.
Similar protections must be used between the time the identifier  is read and when it is
transmitted to  the  device  or  subject requesting the device identifier.  At  some  point  in
this path, the protection mechanism must shift from physical protection to encryption
and  related  mechanisms  because  the data will be exposed to modification during
transmission  to the remote site.

These identification mechanisms, however, do  not  preclude attack from a
sophisticated adversary; they only  make it more difficult for the enemy soldier on  the
battlefield to successfully infiltrate such a system.  It is still  possible to  construct  work-
alike  hardware  that  allows  the device identifier to be changed, and such  hardware
may  be used by the enemy to falsify this identifier as part  of  an attack.



Because of this  vulnerability,  device  identification should be used to  restrict  or
disable  captured  devices, rather than to grant privileges or to serve as user  identi-
fication.  Furthermore, it is undesirable to  give  specific access-control meanings to
specific identifier values, other than to distinguish the devices from one  another.
Despite its limitations, proper design of device  identification  is essential to giving  an
increased  level  of  control  over devices distributed in the field.

4.1.3    Policy of Object Identification and Authentication

For our purposes, objects are simply  passive  entities within a system-our use of
particular terminology should not be construed  to  suggest  a  particular
implementation  of objects  (e.g.,  object-oriented  systems).   The  topic  of object I&A
may require a  broadening  of  one's  traditional focus on user I&A, and the realization
that  the  principles underlying user I&A may be applied equally  to  objects.  An object's
identity can include its class  (e.g.,  classification, type) and a unique name used to
reference a particular instance of the class.  Similarly, active entities,  besides having
unique names, can be grouped via clearance level or group membership, thereby
forming classes which are  meaningful in relation to policy enforcement.  An object's
class is specified  via attributes associated  with the object instances, although all
attributes of  an  object need not apply specifically to  policy  enforcement.  Policy can
specify  proper  activity  in  terms  of an (active  or passive)  entity's  name,  attributes,  or
some combination thereof.

In some cases, such principles  have  been  applied  in existing mechanisms which
enforce  policy  in  relation  to objects, but are simply not recognized  as  I&A  principles,
perhaps due to an over  specialization  of  the  term.   For instance, one purpose of user
identification is to provide a means to capture  the  activity  of  users.   However,  user
activity is usually defined in terms of actions on  specific objects within the system. Thus,
an object's  identity  must be established with certainty in order to accurately capture the
activity of a user.  Alternate naming  facilities,  such as aliases or symbolic links, must
not hinder  the  system's ability to resolve and record the  unique  identity  of  the
physical object.   Here  we  see  that  the  same  principle (unique identification) must be
applied equally to users and to  objects,  otherwise  unauthorized   actions   might   go
undetected.

An object's identity provides a means for both the system and users to bind a logical
entity  with  its  physical (i.e., machine) representation.  As such, an object's  identity can
also be expanded by attaching contextual attributes (e.g., owner, type, authenticity),
allowing  the  system  to achieve a greater degree of functionality in regard  to  its
interactions with objects. In  particular,  object  identity and its associated attributes
enable the system  to  enforce various policies related to specific operations on instances
of objects. Policy decisions are based  either  directly  or indirectly (through associated
attributes)  on  an  object's identity.  The correspondence of a  logical  entity  to  its



physical representation can make policy  enforcement  difficult, or may create
opportunities  to  otherwise  circumvent policies.  This correspondence can be expressed
as the  unification of a logical entity with its  physical  representation;  in  general,  this
unification  must  be  maintained during all operations on an object, throughout its
period of existence on the system.

Problems associated with the unification of information with data result from two
causes: physical or  logical  dispersion  of  object  identity.  Physical  dispersion  exists
because there may be multiple ways to physically access  the logical entity specified by a
unique system  identifier.  If physical resources can be directly accessed, then protection
mechanisms based on object  identification  can  be  circumvented.  If temporary objects
can be  accessed,  such  as  a buffer holding the results of a database query or a  scratch
file on disk, the integrity of other (permanent) objects may be compromised.  Also,
objects within a system will exist in different forms (i.e., on disk, in cache,  in  memory)
over their lifetime within the system.  If all forms of an object are not sufficiently
protected, the integrity of the  object can eventually be compromised.  For instance, a file
may  be protected by the operating system while  in  memory,  but  a  channel  device
which contains maliciously  written  software may modify the file while transferring it
to  or  from  the disk.

While physical dispersion concerns an internal (to  the system) binding of an object to
an identity, logical dispersion is associated with the binding of an external  ``infor-
mation unit'' to a system object or set of objects.   It  is important that an object's identity
and  associated  attributes reflect the external expectation of what  that  object represents.
For instance, if duplicate, sensitive  information is entered into two different text files on
a  system, then that information is necessarily represented  internally by two different
object identities. If  the  two  files  are marked with  different  integrity  attributes,  then
policy decisions may be  inconsistent  with  respect  to  identical units of information.
One of the text files may be marked as Sales and the other as  Development,  or  perhaps
they  are ``owned'' by different subjects. While, the system may  perform flawlessly in
enforcing an integrity  policy  based  on these labels or ownership, different actions may
be  specified, allowed, or disallowed for each object due to the difference in their
attribute  specifications.   Thus,  drastically different versions may emerge over time.

The scope of this problem increases when  one  realizes that the information in one
internal object can be copied to other objects. Even if the attributes  associated  with  the
(original) object are faithfully transferred to all  objects which contain all or part of the
original information,  each of those ``new'' objects must have different internal  iden-
tities. While the overall intent of  some  integrity  policy may be to control access to a
``specific instance of  information,'' the system may have dispersed internal  identities
which contain that information. Because a system's  enforcement of policy is usually on a
per object basis, it  may  be impossible for that system to enforce  (integrity)  policies
which address  the  information  ``identity,''  rather  than internal object identities.



An example exhibiting the dispersion problem is that of updating identical,
distributed databases. The databases represent a single, logical ``instance of
information,'' yet at any given moment the actual contents of the databases may be
different.  If the overall system depends on the cooperation and interaction of
components, some of which have  different values for the same logical entity, the  results
are unpredictable.  The integrity of such a system's  operations may be suspect.

The problems associated with dispersion are  compounded when one considers that
for integrity concerns,  the  attributes associated with an identity might not need to be
identical for all versions of an object, but there may  in  fact need to be some variation of
the  original  attributes  for each copy.  Thus, we suspect that a mechanism to address the
dispersion problem will have some of  the  properties  of  a ``version control'' or
configuration management system which binds related system objects to a single system
identity.

Another concern associated with object I&A is that  the true identity of an object may
be known only by  considering the totality of that object's representation on  the  system
(e.g., its name and location).   The  presence  of  variable search paths for executable
objects may result in the  unintended invocation of improper programs.   On  some
systems, executables can be referenced by a sequential search for the program through
an arbitrary series of file system locations (i.e., directories). This series is arbitrary in  the
sense that the specific locations and  the  order  in  which  they occur in the search path
are not  fixed  properties  of  the system, but may be specified and varied on a subject to
subject basis. If two programs have the same name but reside in different directories, the
actual program  executed  through invoking that name would depend on which
directory  occurred earlier in a subject's search path.

The presence  of  different  forms  of  referencing  an object generally reflects the
desire for flexibility in systems.  However, such flexibility can result in  some  uncer-
tainty about which objects are actually  referenced  by  the invocation of identical
commands in different  environments. It would seem that the definite resolution of
object  identity must be guaranteed by the system in order to maintain a high assurance
of integrity. This implies that  some  method of absolute referencing be provided by the
system, and  used exclusively in  operations  which  are  integrity-sensitive. Absolute
referencing should extend to interactive  commands, dynamic references of applications,
and system-internal references.  However, for universal absolute referencing to  be
practical, the referencing mechanism must be flexible.   The explicit-path  method
described   above   may   prove   too cumbersome;  however, flexible  alternatives
already  exist (e.g., capabilities), although these alternatives  may  have drawbacks of
their own.

Object ``authentication'' may often  simply  mean  that its source of origination is
genuine the  user  who  created the object has been authenticated.  It may be suggested
then that object authentication is then equivalent in some  sense to user I&A.  However,
there are some additional constraints which are assumed in such a proposition.  In
general,  nothing associated with an object throughout its lifetime on the system is static.



Its identity can be changed  by  renaming or making a copy.  Attributes associated with
an object  can be modified and then possibly changed back to the  original. For many if
not most objects, the contents  of  that  object will change  over  time.   The  authenticity
of  an  object created and maintained by a particular user cannot be ascertained if other
users are able to modify the object's  name, attributes, or contents.  Also, an object may
be copied  and illegitimately presented as original. As such,  the  authenticity of an object
is  highly  dependent  upon  a  system's capabilities and the proper administration of
controls  over that object.

In general, object authentication can be  addressed  to varying degrees, depending on
the capabilities and  features offered by a particular system. Some systems, such  as  net-
work and other communications systems,  may  provide  strong authentication of objects
through their protocol structures. The primary motivation is to be able to recognize
``valid'' frames and packets, discarding those with errors or possibly rerouting others to
their proper address.  However, the protocol structure provides a  convenient  location
to  insert more rigorous object authentication mechanisms,  in  general [ISO 1990].  Other
systems  such  as  stand-alone,  personal computers, may  offer  no  intrinsic  object
authentication mechanisms.  Objects on such systems may be  ``authenticated by
recognition,'' but  no  formal  protection  features  are offered.

Some systems may provide general authentication  mechanisms such as digital
signatures, notarization,  or  encryption, which are discussed below. While  general
authentication mechanisms provide the capability to  protect  specific objects on
demand, general  authentication  of  all  objects within a system using these methods
may entail a prohibitive administrative overhead.   The  topic  of  practical  object
authentication is one requiring more research to  arrive  at general solutions.

4.1.3.1 Mechanism of Configuration Management

Configuration management (CM) can be thought  of  as  a mechanism which
incorporates aspects involving both  identification and authentication of objects within a
system.   In its most widely accepted usage, CM  deals  with  controlling the construction
of complex objects, extending to both identifying the components of an object and how
those components are combined.  Configuration management may incorporate features
of access control for greater measures of  protection, but can provide unique protection
services independently  of access control.  Protection provided by  CM  mechanisms  can
extend to an arbitrary level over each object  considered  a component of a more complex
object.

Configuration management mechanisms  are  currently  in wide use in the software
development industry today,  aiding in the control of production software. A more
general  adaptation of CM techniques in the control  of  related  objects seems plausible.
It should be  noted  that  an  application (i.e., a program or set of programs) will  often
provide  a significant amount of control over objects within  its  particular domain.
Therefore, a more generalized CM  mechanism focused on object integrity would need
to extend CM controls over  inter-application  objects   and   possibly   related, system-
level objects.



4.1.3.2 Mechanism of Version Control

A mechanism which is usually integrated into CM systems is that of version control.
Version control allows distinct versions of an object to be identified and  associated  with
independent  attributes  in  a  well-defined  manner.    For instance, three different
versions  of  a  software  package could be marked as ``invalid,'' ``distribution,'' and
``next release,'' respectively.  Each version can be  handled  differently with respect to a
particular policy.  Version  control can include such features as the destruction of ``inva-
lid'' objects or distribution of sanitized versions.

4.1.3.3 Mechanism of Notarization

In the context of distributed systems, it has been suggested that the originator of an
object should be  responsible for assuring its confidentiality, while the recipient of an
object should be responsible for assuring  its  integrity [Jueneman 1989].  From a
detection oriented viewpoint, these are valid points.  However, when emphasizing the
prevention of policy violations, we find that  the  converse  situation must also apply:
the recipient of an object must also  protect an object's confidentiality, while the
originator  must provide some protection of an object's integrity. In particular, the
authenticity of an object must, in  part,  be  the responsibility of the originator.  The
originator  must  be responsible for the proper creation, maintenance, and
administration of the object up until the time of  its  transmission to the recipient.
Similarly, the system on  which  the object resides must provide the proper mechanisms
to support the originator's protection of the object.

Given that an object  is  beyond  the  ability  of  the recipient to protect before it is
received,  the  recipient may be forced to assume that  the  originator  intended  for that
particular object to be sent, and that the  object  had been appropriately protected while
it resided on the  originator's system.  This assumption can be unfounded  for  several
reasons: (1)  it  is  possible  that  the  originator's intentions are malicious, (2) the
authentication  mechanism may have been applied  improperly,  (3)  the  authentication
mechanism itself may contain faults, and  (4)  it  may  have been possible to intercept and
replay authentic traffic.  In this respect, some  authentication  measures  taken  by  the
recipient often only verify that the originator of an object is genuine.

One technique which can strengthen  recipient's  assurance in the authenticity of an
object  is  the  generalized mechanism of notarization. With this mechanism, an  interme-
diary entity intercedes between the originator and recipient during an object transfer,  to
establish  and  certify  the authenticity of the object.  The  intermediary,  or  notary,
``seals'' the object that bears the signature and/or seal of the originator. In its normal
usage, notarization  primarily serves to  verify  the  authenticity  of  originator  of  an
object, rather than the object itself.  A generalized extension of this technique seems
particularly well suited for automated systems. In automated systems, the  originator  of
an object transfer might simply supply a notary entity  with the object,  while  the  notary



entity would perform the actual  application  of  the  authentication mechanism.  This
technique has  the  property  of separating the ability to both originate and authenticate
an object, which would perhaps be desirable for certain systems or applications.
Furthermore, a notary entity might supplement  the  authentication  measures taken by
the originator, thereby  reducing  the  required  degree  of trust for  both entities.

4.1.3.4 Mechanism of Time Stamps

One measure which can be used either  independently  or as a strengthening feature
of other mechanisms (e.g.,  notarization) is the mechanism of time stamps.  Time stamps
can be provided by a system automatically as an integral part of the system's object-
transfer mechanism(s). Time stamps can be used to enforce ``time of  use''  dependencies,
and  can provide added assurance that an object received by an entity is still valid. For
instance, in a real-time  system,  stale data from sensors could  be  detected  and
discarded  by  a recipient processor if the time differential was  too  great for tolerances.
Similarly, there exists  multiuser  systems today which limit the valid ``time of use''
period for  sensitive objects via the use of time  stamps  [Steiner  1988]. Automated
features such as time  stamps  do  not  completely solve all aspects of the  problems
associated  with  object authentication, although they can provide extra  protection. The
main advantages of time stamps are that they can be made efficient, transparent, and
uncircumventable.

4.1.3.5  Mechanism of Encryption

In general, the mechanism of encryption effectively seals the information within an
object inside an additional (logical) container. Used primarily to provide  confidentiality,
general encryption can be used to ensure  the  detection  of integrity  violations  and  to
otherwise  hinder  integrity attacks.  Encryption is  not  absolute  protection,  as  the
sealing process may only be as safe as the  encryption  key. Also, encryption of an object
does not in and of itself prevent damage to its integrity.  However, encryption does
provide an additional level of protection which must be circumvented in order to violate
protection policies, or  to  succeed at making violations  without  detection.   A  distinct
advantage of encryption is its flexibility of use its  ability  to  be  used  either  as  blanket
protection  or  ``on demand,'' and its applicability to a wide  array  of  object types.  There
is a great deal of existing literature on  the various uses and methods of employing
encryption which  will not be summarized in this paper for the purpose of  brevity.
However, specific uses of encryption which are the most relevant to the issues of
integrity are discussed below.

4.1.3.6 Mechanism of Digital Signatures

The mechanism of digital signatures is intended to produce the same (desired) effect
as  a  real  signature:   an unforgeable proof of authenticity.   In  [Rivest  1978]  the
authors describe a specific implementation of digital signatures in a public key
cryptosystem. Every user (and TCB) has a unique, secret decryption procedure D that
corresponds  to a publicly available encryption procedure E.  As an  example scenario,



suppose that A and B (also known as Alice and Bob) are two users of a public key
cryptosystem.   Their  encryption and decryption procedures  can  be  distinguished
with subscripts:  EA,DA,EB,DB.  If Bob  wants  to  send  Alice  a ``signed'' message M in
a public key cryptosystem, he  first computes his ``signature'' S for the message M using
DB:

                                                   S = DB(M)

He then encrypts S using EA (for  privacy),  and  sends  the result EA(S) to Alice.  He
need not send M as well;  it  can be computed from S.

Alice first decrypts the ciphertext with DA  to  obtain S.  She knows who the
presumed sender of  the  signature  is (in this case, Bob); this can be given if necessary in
plain text attached to S.  She then extracts the message with  the encryption procedure of
the sender, in this case EB  (available on the public file):

                                                   M = EB(S)

She now possesses a message-signature pair (M, S) with  properties similar to those of a
signed  paper  document.   Bob cannot later deny having sent Alice this message,  since
no one else could have created S = DB(M).

4.2 POLICY OF AUTHORIZED ACTIONS

Users assigned to particular  tasks  may  have  certain actions  for  which  they  are
uniquely  authorized.    For example, only the approval authority may  be  authorized  to
give the order to launch an attack on the  enemy.   In  computer systems, these
authorized  actions  are  often  called privileges.  Authorized actions can be either
unconditional or  conditional.   Unconditional  authorization  immediately authorizes an
action, although the action may not take place until some time in the  future.
Conditional  authorization authorizes an action, but only if certain conditions hold.

When looking at the topic of authorized actions, we are considering ways in which
access may be controlled,  without implying any underlying strategy  (such  as
strategies  for deterrence).  There may be situations in which the need  for dynamic
modification  of authorized  actions  is  required. Such modifications are usually
performed  by  an  authorized individual such as a security officer, or by a trusted
software component.  However, there may be cases in  which  such modifications must
be allowed to be made by  normally  unauthorized individuals under  controlled
conditions.   It  is necessary that emergency situations  be  considered  in  the design of
authorization systems, since survival of the users may require that overrides be possible.

An authorized actions policy specifies which actions  a subject is allowed to perform,
rather than controls on which data the subject is allowed to access.  We  examine  several
mechanisms that can be used to  specify  authorized  actions under the policy of
separation of duties.   We  begin,  however, by addressing the policy of conditional
authorization.



4.2.1 Policy of Conditional Authorization

If we consider  the  fully  prohibited  (disabled)  and fully permitted (enabled)
conditions to be the two  extremes of  unconditional  authorization,  there  are
intermediate states between these two where conditional authorization can also be
important.  We will examine two conditional authorization mechanisms:  conditional
enabling and  value  checks. Conditional enabling authorizes an action only when
certain conditioning events exist, and  value  checks  are  used  to restrict actions based
on authorized values.

4.2.1.1 Mechanism of Conditional Enabling

Conditional enabling disables the ability to perform  a given action (such as to fire a
weapon) when the action  has not been authorized.  Attempting to perform the action
will produce no effect.  However, if  conditionally  enabled,  an authorization override or
bypass mechanism is  provided.  If the user of the disabled device actuates  some
arming  control, for example, the previously disabled function will now operate.  It is
expected (and enforced by disciplinary  measures as appropriate) that the operator of the
device  will not bypass the required authorization except  in  situations that necessitate
it.  The mechanism serves primarily to prevent accidental actions from being initiated.
The  requirement that the operator take an explicit action  to  override the normal
requirement for authorization  serves  to  ensure that the action was intentional, and
places greater reliance on the operator's contribution to the integrity of the  system.

An example of this mechanism that is  directly  related to our topic is that  of
recently-designed  ``fly-by-wire'' aircraft [Seecof 1989]. These  aircraft  have  computer
controlled restrictions on which actions the pilot may perform; the computer determines
which actions might be  damaging  to the aircraft if carried  out,  such  as  excessively
abrupt changes in direction or  excessive  engine  speed.   If  the pilot attempts to operate
a control outside  the  calculated safe range, the system prevents the control from being
moved into that position. However, if the pilot pushes the control with unusual force,
the system will allow him  to  move it beyond the restricted position.  This override
allows the pilot to exceed calculated safety limits in   emergency  situations,   such  as
collision   evasion. Considerable   controversy   has   surrounded   designs   of
commercial  aircraft  that  have failed  to incorporate such overrides, including
suggestions by  aircraft engineers  at competing manufacturers  that such aircraft will
not perform adequately in emergency situations [Outposts 1989].

For this reason, it seems advisable  that  support  for conditional overrides of this
type be available  in  safety critical systems where the operators are  considered  suffi-
ciently skilled, or where absence of the override may result in dangers that the operator
could  otherwise  prevent.   In designing such  an  override,  individual  analysis  of  the
design is necessary to determine whether and to what  extent the override should be
provided.  It is not possible to give rules that will cover all cases adequately without
examination of individual cases.  Simply omitting to  provide  support for such
overrides, or prohibiting them  in  standards, appears inadvisable.



4.2.1.2  Mechanism of Value Checks

Value checks are a weak form of type  enforcement,  and historically are the
predecessor to abstract data types  and strong typing discussed in  Sections  4.3.1.1  and
4.3.1.2. There are several related types of checking techniques  that we have grouped
under the heading of value checks:  discrete value checks, range checks, and data
attribute checks.

With discrete value checks, data may  be  permitted  to have only certain values out
of a wider possible set, or may be restricted not to have particular values.   For  example,
target coordinates may be  restricted  such  that  artillery could not be directed to fire
upon friendly forces.

Range checks verify that data is within a certain range of values.  For example,
memory  parameters  passed  from  a memory management process to the kernel must
be  checked  to be certain that they  fall  within  certain  bounds.   Range checks
supported by the machine architecture have  generally been limited to those required for
correct operation of  the instruction set, such as checks  for  arithmetic  overflows, and
those required in support of the memory protection  subsystem, such as checks to ensure
that addresses are not  out of range.

Data attribute checks, such as verifying that  data  is in a particular numeric format,
have been present  for  several decades in the instruction sets of commercial machines.
These elementary checks usually involve only verifying  that the data is in a format
suitable for  correct  processing  by  the  machine's defined  set  of  operations,  e.g.,  that
a  packed decimal number consists only  of  the  hexadecimal representation of the digits
0-9 followed by a valid sign digit (A-F) [Struble 1975].  More complex attribute checking
is possible  through programming language constructs.  For example, values may be
required  to  be  numeric  or  alphabetic,  numbers  may  be required  to be  even or
multiples  of some other value, and strings may be required to be of a certain length.

Checking mechanisms beyond these have been  implemented either at the
programming language level, or as  a  programming practice in applications
development.  Subscript  range checking, for example, has been a debug feature
provided  by some compilers even when  the  language  involved  does  not incorporate
strong  type  enforcement,  simply  because  it helped to detect a commonly occurring
error.  However,  such checks were often considered debug-only features,  and  were
usually removed for efficiency reasons in  production  software.

Newer languages retain these checking  mechanisms,  but extend them by providing
for exception  handlers:   when  an error is detected, a means is provided for  the
program  to retain control and handle the error appropriately.   Similar error-handling
mechanisms existed in much  earlier  systems, but generally were a feature of the
processor  architecture which might on occasion be extended into the operating  system
interface where it was accessible  to  the  user.   They were not well integrated into most
programming languages.



4.2.2 Policy of Separation of Duties

Many integrity violations result when a  subject  fails to perform expected duties in
the appropriate way.  A violation can involve willful inappropriate actions  (e.g.,  con-
spiracy, coercion, and duping), failure to  perform  duties, or performance of duties in
inadequate  ways.   To  promote prevention and detection of these types of violations,
separation of duties may be employed.  In this type  of  policy, different  subjects  are
given  distinct  but  interrelated tasks, such that  failure  of  one  subject  to  perform  as
required will be detectable by another.  To avoid circumvention of this mechanism, any
one subject is explicitly prohibited from performing another subject's duties.

This policy is based partly on the expectation that not all subjects involved in
interrelated  tasks  will  attempt integrity violations at the same time  (i.e.,  collaborate),
and that those who do not attempt integrity violations  will detect the failure of their
counterparts.   People  may  be less likely to attempt integrity  violations  if  they  know
that their actions will be visible to others  who  are  performing related duties.  Likewise,
people may be more likely to notice and recognize situations that are anomalous and to
report them.   Depending  on  how  duties  are  partitioned, separation of duties may
altogether prevent a single  individual from violating integrity.   For  example, some
tasks may be partitioned among several  subjects  such that, while none of the subjects
can observe their  counterparts'  actions,  the  task  cannot  be  completed without a
contribution from all the subjects.

It must be noted that the  preventive  effect  may  not always be provided by a simple
separation  of  duties.   For example, if one individual is allowed to  issue  checks  but not
update inventory records,  and  another  is  allowed  to update inventory records but not
issue  checks,  the  first individual may still issue unauthorized  checks.   The  fact that
the checks are unauthorized will be detected  by  auditors who find that the payments
did  not  result  in  items being added to the inventory, so the fear of being  detected is
the principal deterrent.  The example could  be  enhanced to include the preventive
effect  if  the  duty  of  issuing checks was further divided to limit a first person  to  pro-
viding a proposed table of check addresses and amounts,  and a second person to
authorizing the AIS to print  the  checks and controlling the check stock.

It should also be noted  that  restricting  access  may prevent an individual from
filling in for another individual in an emergency situation, such as a situation in which
the individual originally assigned a given task  is  injured  on the battlefield.  Thus,
separation of duties also  increases the extent to which individuals become  critical
components in the overall functioning of a system.   If  other  persons are prevented from
substituting for the missing person,  the system may be disabled more easily  by  the
failure  of  an individual to perform their assigned duty.



One of the stronger points of separation of  duties  is that, in certain systems, it is
possible  to  be  reasonably certain that not all subjects will fail.   For  example,  it may be
expected that an intruder will not be  able  to  find ways to violate the integrity of all
subjects  among  which duties are separated, and thus that the  remaining  subjects will
detect the attempted integrity violations of the  other subjects.  On the other hand, if this
expectation is  incorrect, and the intruder finds a  way  to  cause  ``collaboration''
between all the subjects involved, this  policy  will not detect or prevent the violation.

In the case of machine processes, the preventive effect can be achieved when it is
possible to partition  the  functions of the different processes such that a  single  errant
process cannot in itself cause a harmful  result  to  occur. However, the psychological
element  involving  the  fear  of detection is absent in machine processes.  Since they
merely perform their operations  as  programmed,  without  detailed evaluation of risks,
machine processes will not be  deterred a priori from committing integrity violations.  In
the  same way, they will only detect violations for  which  they  have been programmed
to check, and are not  likely  to  recognize many forms of suspicious behavior by their
counterparts.  A machine process which is involved in  separation  of  duties with a
human counterpart is particularly vulnerable,  since the person may find it easy to
``outwit'' the  machine's checks, especially if  the  person  comes  to understand  the
machine's checking algorithms.

The enforcement of separation of duties can  be  either static or dynamic.  The
simplest approach is static  separation, where the system administrator in charge of
maintaining access controls is responsible for understanding the way the rules achieve
separation of duties and for making appropriate assignments.  This approach is limited
in functionality because it is often necessary or desirable  to  reassign people to duties
dynamically.  An  alternative  approach  is for the system to keep track dynamically of
the  people  who have executed the various actions in the task sequence,  and to ensure,
for any particular execution, that proper separation has occurred.  However, there are
several hard problems to solve in order to implement dynamic separation of duties, such
as encoding valid  sequences  and  separately  tracking each execution of a particular
sequence.

4.2.2.1 Mechanism of Rotation of Duties

In some tasks, it is likely that  a  person  performing the task may discover, through
random events, ways  to  compromise the integrity of the system.  If such  a  person  is
corrupt or corruptible, the probability that the person  can cause an integrity violation
increases  the  longer  he  is assigned to the same duty.  The probability that the  viola-
tion will remain undetected is  also  increased  in  certain instances.  To address these
vulnerabilities,  rotation  of duties is used, in which a person is  assigned  to  a  given task
for only a limited amount of time before being replaced by another person.



For example, a person may discover exploitable  ``loop-holes'' in a system and may
decide to use  them  to  violate the integrity of the system.  If the person is  rotated  out of
a given position before such  loopholes  are  discovered, some threat to integrity may  be
reduced.   Note,  however, that communication between current and former  occupants
of the vulnerable role may defeat the  protection  provided  by this mechanism.  Rotation
may also give the user  a  broader understanding of the operation of the  system,  giving
more insight into how to circumvent integrity.

Additional features of rotation of duty involve  limiting the damage one individual
can  do  and  increasing  the likelihood of detection.  If a given individual  is  seeking to
bring about violations of integrity, rotation can  accomplish two things.  First, if there is
only one task in which an individual has discovered a way to perform an  access  in
violation of policy, rotation will reduce that  individual's exposure to the vulnerable
task. Second, rotation may enable identification of the individual involved  in  an
integrity violation:  if an audit shows that  a  problem  exists  only while a given
individual is assigned to a  particular  task, this provides evidence that individual may
be  associated with the problem in some way.  If  the  individual  has discovered ways to
violate integrity in multiple duties,  an audit may indicate that the problem ``follows''
the individual as rotation occurs, again providing  evidence  that  the individual in
question may be involved in the violation.

Rotation of duty also  addresses  an  integrity  threat that does not involve willful
malicious  action:   the  tendency for errors to increase when a person performs a
monotonous task  repeatedly.  In  this  case,  rotation  of  duty reduces the amount of
time  the  repeated,  monotonous  task must be performed by a given person.  In general,
electronic systems do not have an analogous property, although mechanical systems
may (i.e.,  rotation  to  distribute  mechanical wear among exchangeable parts).

This mechanism implies separation of duties,  since  in order for duties to be rotated
among  different  users,  the duties must first be partitioned among these  users.   Thus, it
is necessary that a mechanism be provided to enforce separation of duties.  For rotation
of duties, this enforcement must be extended to allow orderly, policy driven rotation of
assignments to specific duties.  The rotation may occur at a specific point in time, or in
response  to  requests  by  an administrator.

Rotation of duties can  also  be  used  to  effectively rotate data.  For example, if three
accountants  are  maintaining the  accounts  of  three  different  companies,  the
accountants could be rotated among the  different  companies periodically.  The duty of
accounting would not change  (and thus no additional training would  be  necessary),
but  the data being maintained would be  rotated  among  the  accountants, reducing the
probability  that  an  authorized  user would make improper modifications.



4.2.2.2 Mechanism of Supervisory Control

In some cases, authorization may be delegated  to  subjects in controlled ways.
Supervisory control exists when a subject in a supervisory role is required to authorize
specific actions to be carried out by a subordinate subject  as certain conditions  arise.  In
general,  the  authorization would apply to exactly one occurrence of an action  so  that
overall control of the activity remains with the supervising subject.  Supervisory control
may involve  either  requiring an individual to give final approval to an action being ini-
tiated by another individual, or requiring an individual  to give final approval only to
actions that meet  certain  constraints (such as those that have particularly severe conse-
quences).  Normal activity outside the scope of  these  constraints would not require the
approval of the supervisor.

This mechanism provides for delegation of  less  integrity  critical tasks to less trusted
individuals,  with  only the  integrity critical  portions  being  dependent  on  the
supervisor.  One example is check cashing authority at  grocery checkout stands.  A
checkout  clerk  can  initiate  the check cashing procedure, but  must  receive  final
approval from a supervisor for the actual transaction to take place.

Supervisory control is often a complexity-control mechanism.  The delegation of
action is often a tradeoff,  since it might be desirable  under  ideal  circumstances  for  all
actions to be performed by the most trusted individual,  but doing so would not be
possible due to the number of individual actions that must be decided upon and
undertaken.   This fact highlights one  vulnerability  associated  with  supervisory
control if the critical conditions which require  a response occur with high frequency, the
supervisor may spend an unacceptable portion of time  issuing  authorizations  to
subordinates to deal with the  occurrences.   Therefore,  it may be inadvisable to rely on
supervisory control if such  a high frequency situation is likely  to  occur,  unless  this
contingency has been planned for (e.g., through the granting of blanket authorizations).

4.2.2.3  Mechanism of N-Person Control

N-person control (where N is  a  number,  typically  2) requires more than one subject
to request or participate  in the same action in order for the action to be successful. An
example of this mechanism is a system for commanding missile launches in which two
physically separated controls must  be operated by two people  simultaneously.   The
rationale  is that n people are less likely to spuriously decide to initiate an action than
would one person.

This is a unique mechanism, which is  not  provided  in most existing computer
systems.  It is roughly analogous  in its underlying purpose to the preventive aspect  of
separation of duties, in that it serves to require  that  multiple persons cooperate to bring
about a controlled  action.   The difference is that in N-person control, separate
individuals are performing the same duty (as opposed to different duties in separation



of duties) to bring about a single action.   N person control often also requires that these
persons  perform actions simultaneously; by  comparison,  separation  of duties usually
does not involve this requirement for  simultaneity.  As with may other mechanisms, N-
person control can be strengthened by incorporating  other  security  features, such as
time tokens, trusted path, and physical security.

4.2.2.4 Mechanism of Process Sequencing

Certain duties may be required to  be  performed  in  a certain order; this process
sequencing can  serve  at  least two purposes.  First, this mechanism  can  ensure  that  all
steps necessary for a multi-step procedure are  followed  in the proper order.  Second, if
the sequence is known only  by current authorized users, it may be more  difficult  for
an adversary to successfully discover the sequence and  violate the integrity of the
system.  Process sequencing  especially discourages trial-and-error attacks, if the
sequence is long and an improper sequence makes it necessary for the user  to start over
at the beginning.  However, it can also  make  it more difficult for an authorized  user  to
succeed  at  the required steps, if the procedure or environment is such that errors by
users are likely.

4.3 POLICY OF SEPARATION OF RESOURCES

In addition to separating duties among  different  persons  or  processes,  access  to
resources  can   also   be separated.  In this policy, the resources to which  subjects have
access are partitioned so  that  a  given  subject  has access only to a subset of  the
resources  available.  More precisely, a given subject and the  tools  (e.g.,  programs,
system utilities, system  applications)  available  to  that subject are allowed access only
to specific  resources.   An example is disk quota enforcement, in which  the  amount  of
disk space that each subject may use is limited to  a  fraction of the total space available
in the system.  This  policy can overlap with the separation of  duties  policy  discussed
previously if the resources that are controlled limit the duties that each subject can
perform.  However,  separation of resources can also have other effects, such as  lim-
iting  the  extent  of  damage  to   otherwise   homogeneous resources that can be caused
by a given errant subject.

Similar principles apply to separation of resources  as apply to separation of duties.
As with separation of duty, a means of partitioning is required, but the partitioning sep-
arates resources rather than duties and  tools.   To  accomplish this end, the TCB should
provide a means of  enforcing an appropriate partitioning of resources such that they
are accessible only to persons or processes in specific roles.

To a certain extent, such mechanisms are  already  provided in existing systems.
Identity based  access  control allows such discretionary partitioning, e.g., owner has
discretion to grant access.  In some cases such partitioning is ``mandatory.''  For
example, in many systems, only the owner of a file is allowed to perform certain
operations  on  it, such as deleting it or changing its access attributes.  Permission to
change access permissions, identified in  [Bishop 1979] as ``grant'' permissions
(sometimes  inexactly  called ``control'' permissions), is ``mandatory'' on such a  system
because it is not possible for anyone to modify this permission to allow someone else



other than the owner of the  file to change the access permissions.   Thus,  the  presence
of this access control is mandated by the implementation of the system security policy,
and cannot be overridden at the discretion of the users.  The word ``mandatory'' in this
sense has a different  meaning  than  the  word  ``Mandatory''  in ``Mandatory Access
Controls,'' since the latter usage refers to a specific type of access control whose
mandatory  nature is based on rules that must  be  followed.   Adding  further
mandatory or rule based restrictions specified on a per user basis could strengthen  most
identity based,  discretionary partitioned systems.

However, there is an additional aspect to separation of resources.  If there is also a
restriction in terms of which programs (or classes of  programs)  are  allowed  access  to
resources, it is possible  to  limit  the  damage  that  can result  from  self propagating
programs  such  as  computer viruses.  By separating resources, the  principle  of  least
privilege can be applied to limit the damage a  virus  could cause if one did get into the
system.  Such viruses normally act as Trojan horses:  while performing operations  on
some authorized resource, they also covertly  perform  operations on resources
(executable program files)  which  they  should not be permitted to modify.  If a program
whose  purpose  is to display  mail  files,  for  example,  is  prevented  from accessing
other program files because they  are  a  type  of resource not appropriate or necessary
for  the  mail reader program to access, the mail reader program is prevented from
covertly modifying the other program files while it is  performing its normal, authorized
function.  This topic will be discussed  further  under  encapsulation  mechanisms.    The
remainder of this chapter discusses separation of  resources mechanisms grouped under
three policies: address space separation, encapsulation, and access control.

4.3.1 Policy of Address Separation

Throughout the  history  of  computer  architectures  a variety of file and  memory
protection  schemes  have  been developed to prevent a process from incorrectly
accessing  a resource or overwriting memory that is not allocated to  the process.
Overwrite prevention is necessary since such  memory often contains another process's
code or data, or a portion of the operating system, control tables, or device registers for
the system.  We describe two  address  separation mechanisms that can be used to
prevent  unauthorized  access or overwrites:  separation of name spaces and descriptors.

4.3.1.1 Mechanism of Separation of Name Spaces

Fundamental to the separation of  name  spaces  is  the principle that an object that
cannot be named also cannot be addressed. This mechanism,  separate  from,  although
often confused with memory protection, is both an  elementary  way to think about
protection and a basis for  file  protection. In this approach, users are provided distinct
separate  naming or ``catalog'' spaces, such that the  same  name  (e.g., home directory)
refers to separate, non-overlapping  objects when used by each user.  The  result  is  that
each  user's processes are unable to name or  access  the  other's  named objects, the
object's addresses are resolved to a  different locational meaning.  This was the primary
file  system  protection scheme of M.I.T's  Compatible  Time  Sharing  System [Saltzer
1977]. This mechanism can be applied to  protecting arbitrary named resources where
each user or process has its own distinct name space in which it may use  resource



names without having to consider name usage by other processes.      The principle
drawback of this  mechanism  is  that  it precludes sharing, at least via named objects.  It
does  not provide for ``controlled sharing'' at all.  So other  mechanisms have  been
developed  to  address  protection  (e.g., access control lists)  and  sharing  of
information  (e.g., working directories).

4.3.1.2 Mechanism of Descriptors

The approach to memory protection that is the basis  of ``segmented'' memory
systems is based  on  special  hardware implementing a descriptor table.   In  the
descriptor based approach, all memory references by a  processor  are  mapped through
this special  piece  of  hardware.   The  descriptor table controls exactly which parts of
memory are accessible.

The entries in the descriptor table are called descriptors and describe the location and
size of memory  segments. A descriptor contains two components:  a ``base'' value  and a
``bound'' value.  The base is the lowest  numbered  memory address a program may use,
and the bound is  the  number  of memory locations beyond the base that may be used.
A  program controlling the processor has full access to everything in the base bound
ranges located in the descriptor table.

The  descriptor based  approach  to  memory  protection operates on the assumption
that the  address  (name)  of  an object in memory is equivalent to  the  object  itself,  and
thus that controlling the ability to use the address to reference the object provides
control  over  the  object.   The advantages and disadvantages of  descriptors  are  a
direct result of this assumption.  Because objects in primary  memory are always
referenced via an addressing mechanism,  into which the descriptor based protection
mechanism  is  interposed, it is straightforward to show  that  this  protection mechanism
serves as a reference monitor for objects that are in memory.

But not all objects reside in memory; they also  reside on other devices, some of
which (such  as  data  on  conventional 9-track tapes) are not referenced by addresses at
the hardware level.  Thus, it is necessary to impose control  on access to the device, then
implement  additional  protection  mechanisms in software to control access to the data
stored on the device.  This approach complicates  verification  and is less consistent with
the requirement that  the  reference monitor be ``small enough to  be  subject  to  analysis
and tests.''  Furthermore, some memory locations,  such  as  the CPU registers, are not
protected in this  way  at  all;  the approach taken is to view these memory  locations  as
being part of the subject, and thus the protection mechanism seeks to prevent data from
being moved  into  these  memory  locations.

Granularity of segments is another problem in such systems.  Since segment sizes
vary, locating available space in memory is not trivial. As  a  result,  fixed sized
segments (commonly called pages) are used  in  most  modern  computer architectures.
Fixed sized segments, pages, also  eliminate the need for the ``bound'' component of the
descriptor since all pages have the same bound.



One other  disadvantage  of  descriptors  is  that  the attributes of objects protected by
descriptor based  mechanisms are not attached to the objects in  a  consistent  and direct
way.   Objects  of  similar  attributes  are  grouped together  where  they  can  be
protected  under  the   same descriptor; if values are copied out of them into  registers or
into other objects, the attributes of the original object do not automatically follow the
information.  This is one of the principal reasons for the information flow  restrictions
that result from the traditional  mandatory  access  control disclosure rules:  the rules are
intended to keep data  with similar attributes together.  However, there are no
theoretical impediments that preclude direct  attachment.   Rather, this is an
implementation issue and reflects the  industry's past success and failure.

There  are  also  advantages  to  the  descriptor based approach.  It is usually  very
efficient  to  implement  in hardware, and access rights can be associated with each
segment via the descriptors.  The block sizes which descriptors reference (the
granularity) are chosen specifically for this reason.  These block sizes enable the
otherwise time consuming arithmetic for computing permissions to be performed  by
partitioning the binary addresses into groups of digits, and routing these groups of
digits through  the  hardware  which processes the addresses  to  determine  access
permissions. Thus, the mechanism tends to be time and hardware efficient.

There is also the  advantage  of  experience.   Because this approach has been
extensively used for several decades, it is well understood and well developed.  It  has
strongly influenced the current view of computer security, as well as the basic machine
architecture most people associate with  a computer.   Thus,  existing  concepts  fit  well
into  this approach.

4.3.2 Policy of Encapsulation

Encapsulation mechanisms provide important design paradigms for producing
systems with improved integrity  properties.  These mechanisms provide support for the
type of system architecture requirements of the  TCSEC  (for  B3  level features  and
assurance)  which  state,  ``the  TCB   shall incorporate significant use of  layering,
abstraction,  and data hiding'' [DOD 1985, p 38].

Underlying these design  paradigms  is  the  goal  that software and hardware
components  should  be  structured  so that the interface between  components  is  clean
and  well defined, and that exposed means of input, output,  and  control, besides those
defined in the interface, do not  exist. This approach serves  to  limit  complexity  of  the
module interfaces, as well as  complexity  of  the  software  as  a whole, since it restricts
the means by which the modules  of the system can interact.  It also serves to impose an
architectural discipline on those implementing the  system,  when provided as a
mechanism rather than simply as a design paradigm, because it prevents the
implementers from  circumventing the defined interfaces in the course of



implementation. Four encapsulation mechanisms are discussed below:  abstract data
types, strong typing, domains, and actors.  Given  that certain resources within the
system  are  encapsulated,  we describe three well-defined interface mechanisms that can
be used to manipulate those  encapsulated  resources:   message passing, data movement
primitives, and gates.

4.3.2.1 Mechanism of Abstract Data Types

Abstract data types precisely define the  semantics  of data and control the operations
that  may  be  performed  on them.  This mechanism defines a type to be a particular  set
of data values and a particular set of operations to perform on those data.  Thus, just as
there  is  usually  a  set  of ``integers'' in a programming language, it  is  possible  to
define a ``degree'' type which consists of the degrees of  a circle, and operations
performed on  values  of  this  type. More complex types are also possible, and  may  be
used  to represent physical objects (robot  arms,  mechanical  equipment, etc.) for
programming purposes.  Abstract data  typing is a fundamental mechanism of modern
high order languages.

Abstract data types  have  substantially  improved  the ability to support integrity.
Their use  addresses  two  of the three goals of integrity cited earlier. They  allow  the
programmer to define data  to  be  of  types  more  directly derived from the things the
data actually represents;  thus, there is less of a ``semantic gap'' between  what  the
programmer is trying to represent and what form the data  actually takes. This supports
the goal of ``maintaining internal and external consistency of  data.''  With  respect  to
the other two goals, the mechanism, as it is normally used, does not prevent
unauthorized users from modifying the data; however, it can aid in preventing
authorized users from modifying the data in inappropriate ways, as  long  as  they
correctly use the defined operations for that type.

The existence of support for abstract data  types  does not in itself completely ensure
that subjects cannot  modify data in inappropriate ways since many implementations
allow programmers to override the  data  typing  mechanisms.   The adherence to the
defined data types in such  implementations is the responsibility of the programmer.

4.3.2.2 Mechanism of Strong Typing

The mechanism of strong typing  is  simply  the  strong enforcement of abstract data
types.   The  permitted  values and  operations  of  an  abstract  data  type  are  strongly
enforced by the compiler or hardware, and cannot be  circumvented.  Programmers are
prevented  from  taking  convenient and possibly efficient shortcuts in their
manipulations  of the data, but integrity is enhanced by constraining programmers to



manipulate data in  well-defined  ways.   Users  are prevented from accidentally
misusing the  data  type,  especially when they may not understand the details of a
particular data type.   Even  though  an  object's  representation might be compatible
with operations not associated with that data type, such operations will not be
permitted.

For example, consider a data type  whose  value  represents the angular position of a
gun  turret.   Suppose  that the angular position is  represented  using  the  computer's
hardware representation for a floating point  number.   Even though this floating point
number is allowed by the hardware to take on a very wide range of values, the  use  of
strong typing could prevent the normal  floating  point  operations from being
performed on the number. Instead, a  new  set  of operations would be provided for
modifying the number, which constrains the resulting values to  meet  acceptable
conditions.

Thus, the ``+'' operation might be defined to prevent a programmer from
incrementing the turret position  such  that its angle was greater than 360 degrees. This
``+'' operation might also prevent a programmer from adding more than a certain
increment to the position in  a  single  operation  (to meet physical restrictions of the
machinery that rotated the turret).  This ``+'' operation might also be defined to have the
side effect of repositioning the turret to the new value whenever the number was
changed, so that the  number  always accurately reflected the position  of  the  turret.
Strong typing would prevent the use the machine's general  floating point ``+'' operation
instead of the operation  defined  for the turret-position data type.  Thus, it would not  be
possible to either (1) set the turret position to invalid  values, or (2) set the number so it
did not accurately  reflect the turret position. This form of strong typing is currently
available in the Ada programming language and in other  high order languages.

Strong typing is not limited to programming  languages. For example, the
mechanism may be used to prevent a pilot of a particular type of aircraft from
commanding it to  perform an operation for which it was not designed and that would
be damaging to the aircraft's structure. The  values  to  which aircraft controls may be set
can be considered analogous  to the set of values that data of a particular  type  may  take
on.  The specific set of allowed operations  the  pilot  may perform on the controls may
be considered to be analogous to the allowed set of operations on a conventional  data
type. Ultimately, the control values and operations  may  actually be represented via
conventional  programming  language  data types in, for example, a ``fly by wire''
system; in  such  a case, maintaining a consistent mapping between the  programming
language type restrictions and the user interface (aircraft controls) in a way acceptable to
the pilot may prove a significant design challenge.



4.3.2.3 Mechanism of Domains

A domain is a mechanism that uses the principle of separation to protect resources.
A domain achieves  protection by encapsulating its resources in what is effectively a
distinct address space.  As described in [Boebert  1990]  there are at least two ways to
implement domains:  as common  subsets of subjects, and as equivalence classes of
subjects.

Domains are typically implemented as common subsets  of subjects. The  Multics
ring  mechanism  is  a  prototypical example of domains implemented in this way.  The
common subsets are the rings.  The address space of  each  subject  is subdivided into a
series of rings.  The rings have a hierarchical relationship, with the innermost ring being
the  one with highest privilege. Program code executing  in  a  given ring can access data
objects in rings  of  lower  privilege, and they can make procedure calls to rings of higher
privilege.  Due to the hierarchical relationship among domains in this type of
implementation, domains of higher privilege are protected  from  domains  of  lower
privilege.   Protection between mutually suspicious domains cannot be supported.

The LOCK architecture  [Boebert  1990]  overcomes  this problem by implementing
domains as  equivalence  classes  of subjects.  Each instance of a domain is  encapsulated
in  a single subject, and has its  own  separate  address  map  to achieve isolation.  Shared
objects, which  are  mapped  into the address space of two or more subjects, provide the
means of data flow between domains.  Control flow requires a  special mechanism
because each subject has  its  own  execution point which stays within the address space
of that  subject. The mechanism used in LOCK is intersubject signalling.

4.3.2.4 Mechanism of Actors

Programs can be designed  to  function  as  actors,  in which the user of the program
issues a request to access  an object in a particular way, and the program then acts on the
request itself.  In such a case, the program interprets  the request and then performs  the
appropriate  action,  rather than having the action performed upon the object by an
outside entity.  An example would be an integer  object,  which would be given the
request ``add 12 to yourself.''

Actors are partly software structuring mechanisms; they help to organize software
into distinct,  autonomous  parts. But they also reduce the  risk  of  ``tampering''  with
the object by direct modification, since the only way  to  cause the object to be  modified
is  by  requesting  the  program (actor) to do so itself.  The program  can  be  designed  to
check requests  before  acting  upon  them,  and  to  reject improper requests.  Actors are
distinct from  mechanisms  in which the  user  process  ``executes''  a  segment  of  code
directly in order to manipulate an object (i.e.,  a  subroutine written to manipulate data
of a particular type).   The underlying implementation distinctions between the two,
however, can be subtle.



The actor concept explicitly requires  that  individual modules are responsible for
performing operations  on  their data themselves, in response to requests from  modules
that use them.  This is, in part, simply a way of looking at  the software.  Thus, the same
operation ``a+b'' can  be  thought of as meaning either ``fetch values a and b and perform
the `+' operation on them, giving a new value,'' or ``request  a to add b to itself and
return the new value to  the  requester.''  The conceptual difference is that  the  ``fetch
and perform'' concept implies that the  user  directly  accesses the values, whereas the
latter (actor) concept implies  that the values are autonomous  entities  that  respond  to
user requests.

The actor concept suggests that  the  values  are  less passive and thus more able to be
self-protecting-a view that can promote a better software architecture from the security
standpoint.  It is, however, necessary to continue  to  keep efficiency and the architecture
of the  underlying  hardware in mind when using actors.  The higher level of  abstraction
should not hide the importance  of  efficient  architectural design from the implementer,
particularly in  embedded  systems that often have real-time requirements.

4.3.2.5 Mechanism of Message Passing

Message-passing mechanisms, when used  as  the  primary interface between
modules, restricts improper access because requests and data are communicated to  the
software  components through a well-defined mechanism that is distinct from the
mechanisms used to modify data  directly  (e.g.,  direct writes to memory,  input/output
operations,  branches  into module code entry points). Trusted Mach [Branstad  1989]  is
an example of the use of such a mechanism.  Message  passing mechanisms, of course,
use some of these direct-access mechanisms internally.  But the message  passing
paradigm  controls the accesses into components implementing the  message passing
mechanism, rather than distributing the use  of  the direct-access mechanisms
throughout the system.

As a result, implementation of a reference monitor,  as well as verification of the
mechanisms used to affect intermodule communication, are simplified by this
localization of function.  The operations that are  directly available to the  users  (the
individual  software  modules wishing  to  communicate with one another) do not
provide a way to directly modify or execute portions of other modules; they  only
provide the ability  to enqueue well-defined requests to pass data to the other  modules.
These requests can then be  checked  for correctness, and the modifications can be
carried out  at  a  time when the receiving module is ready to handle  the  data (i.e.,
when the receiving module executes a receive  message operation).

4.3.2.6 Mechanism of the Data Movement Primitives

Most computer architectures equate a data  object  with the place in which it is stored.
A  computer  architecture which uses the data movement primitives ``get'' and  ``put''
distinguishes  a  data  object  from  its  storage  location [Roskos 1984]; it is possible for a
process to move (get) an object out of its storage  location  (which  may  be  shared
among many  processes)  into  a  private  location,  perform operations on the object, and



then move (put) it  back  into the shared location. During the time the object  is  in  the
private location, it cannot be accessed by other  processes, and references to the shared
location generate an  exception condition.  This architecture addresses  integrity
problems in which multiple processes share data and try to update  it at the same time,
causing the data object to be corrupted.

4.3.2.7 Mechanism of Gates

When an object (or simply a subroutine) is able  to  be executed directly by a process,
it is possible to limit  the actions that the process can  perform  through  the  use  of gates.
A gate is a controlled entry point into a segment of code.  It is not possible to enter the
code  except  through the gate, and restrictions can be enforced  regarding  which
processes are allowed to enter the  gate  (e.g.,  only  code with certain privileges, or
acting  on  behalf  of  a  given user, may be allowed to do so).

Gates can also be used to cause a transition in  privilege.  For example, a process
which enters a routine  via  a gate may gain extra access  permissions  or  allowed
operations, since use of the gate ensures that a specific segment of  code  will  be
executed  while  these  permissions  are granted.  The code can be verified to ensure  that
it  does not allow unauthorized use of  the  privileges.   Upon  exit from the routine, the
extra privileges are  revoked  by  the system.

4.3.3 Policy of Access Control

The policy of access control  restricts  which  data  a subject is allowed to access.   An
evolving  framework  for addressing  restrictions  on  access  control  is  given  in
[Abrams 1990].  Restrictions can be either identity-based or rule-based.  Identity-based
controls are   typically   associated   with  discretionary  security policies,  and  rule-based
controls are typically associated with  mandatory  security policies.  In identity-based
mechanisms, the identity  of  a subject or object must match the identity specified  in  the
particular access  control mechanism.  We  discuss three  mechanisms  that  can be used
to enforce  identity-based  access restrictions:  capabilities, access  control  lists,   and
access  control  triples.  In rule-based  mechanisms,  one or more attributes of a subject
must obey  specified  rules  in  relation  to  corresponding attributes of an object  that the
subject desires to access. We  discuss  labels  as  a  mechanism  to enforce rule-based
access restrictions.

4.3.3.1 Mechanism of Capabilities

Capabilities provide a general and flexible approach to access control.   A  capability
is  a  specially  protected object (or value representing it) that contains the name  of the
object to which it refers along with a specific  set  of attributes or permissions that specify
what types of  access the possessor of the  capability  is  granted.   It  can  be thought of as
an unforgeable ticket, which, when  presented, can be taken as incontestable proof that
the  presenter  is authorized to have the specified access to the object  named in the
ticket.  Thus, when a  subject  wants  to  access  an object, the subject simply presents the
appropriate capability and a descriptor is immediately created (giving the subject access
to the object)  with  no  additional  permission checks being performed.



The system can invalidate a capability (so that possession of it no longer grants
access), can control whether  or not it is possible to give away the  capability  to  another
process, or can limit the number of times a  capability  may be used to access an object.
Capabilities  provide  a  very powerful  and  flexible  means  of  controlling  access   to
resources, and distributing that  access  to  others.   This topic is discussed  further  and
many  implementations  are identified by Gligor et al. [1987].

4.3.3.2  Mechanism of Access Control Lists

Where capabilities employ a ticket-oriented strategy to access control, access control
lists (ACLs) employ  a  list-oriented strategy.  An  access  control  list  contains  the names
of subjects that are authorized to access  the  object to which it refers, as well as specific
permissions that are granted to each authorized subject.  Thus,  when  a  subject wants to
access an object, the system searches for an  entry for the subject in the appropriate ACL.
If an entry exists, and if the necessary permissions are  part  of  that  entry, then a
descriptor is created.   The  list-oriented  strategy requires one more permission check
than the  ticket-oriented approach when a subject requests access to an object.

ACLs can be thought of as a somewhat more flexible form of strong typing, although
conceptually  they  are  not  as powerful for programming purposes.  Their generality
allows one to set access permissions arbitrarily, with the  result that someone who does
not fully  understand an  application  might grant a user access  to programs  and data
which were incompatible. This could result in a program operating upon data it was not
designed to handle, and  thus performing   incorrectly.   This  situation  is  largely  an
educational  concern for users, but is of  importance in the design  of  programmable
systems.

In a system in which names are considered equivalent to objects, such that
controlling the  use  of  names  controls access to the objects they reference,  a  potential
problem exists if multiple names are allowed to reference  the  same object.  These names
essentially provide alternate ``paths'' to the same object, and if  ACLs  are  associated
with  the names rather than with the object itself,  a  user's  access may be restricted if a
reference is made via one  name,  but not restricted if the reference is made  via  another
name. The result is that a given user's access permissions for  an object can be
inconsistent when viewed  in  terms  of  these multiple names.  Multiple names can be a
problem in database systems where multiple ``views'' are  provided  with  access
controls associated with the views.  It is also a problem in conventional operating
systems when access  permissions  are associated with directories and multiple  ``links''
(directory references) exist  to  the  same  file.   This  problem exists regardless of
whether  the  access  permissions  for files are stored in the directories, or whether access
controls on the directories  themselves  are  used  to  control access to the objects
referenced within the directories.



4.3.3.3 Mechanism of Access Control Triples

An access control triple is a  list-oriented  mechanism that was conceptually
introduced by Clark and Wilson  [1987] to  address  access  control  requirements   more
commonly associated with ``commercial'' computer systems rather  than ``military''
systems.  It provides a  finer  granularity  of access control than normally  associated
with  capabilities and ACLs by specifying required linkage for a user, program, and
object along with specific permissions that are  granted to the user while invoking the
particular  program  on  the given object.  The triples of the Clark-Wilson model
essentially define allowed type  operations,  and  the  Integrity Verification Procedures
(IVPs)  of  the  Clark-Wilson  model define a set of permitted values for data of a given
type.

A principal distinction, then, is the association of  a given set of triples with a given
object, rather than with a given type.   This  distinction  is  necessary  because  the Clark-
Wilson triples control which users may perform  operations on a given object, and thus
provide one of the components of integrity enforcement which is missing from
conventional strong typing. To do this form of integrity enforcement, access permissions
must be specified on a  per  object basis, not simply by type.  ACLs also specify  these
access permissions, but they do not include a  detailed  specification of what operations
may be performed:  they simply indicate  whether or not each predefined  set  of
operations  is permitted.

Access control triples are not a strict  generalization of strong typing because the per
object specification  property of Clark-Wilson does not  allow  triples  to  implement
conventional strong typing.  A single  triple  describes  an existing object, not a set of
objects that will  be  created in the future.  A similar argument can be made  with  regard
to ACLs. That is, ACLs permit a wide variety  of  operations to be performed without
explicitly specifying them  as  long as they do not violate the access  restrictions  imposed
by the ACLs.

4.3.3.4 Mechanism of Labels

It is also possible to associate  one  or  more  labels with each user, process, and
resource  to  implement  rule-based access control.  Processes inherit user labels, and  a
process is granted access to a resource only  if  their  two labels meet some criterion of
comparison.   For  example,  a TCSEC mandatory access control label has both a
hierarchical and a non-hierarchical component.  Each subject is  assigned a clearance and
one or more categories or compartments,  and each object is typically assigned a
classification  and  one category.  A subject is granted access to an object based on a



comparison of these values.  In this case, the  comparison is via an ordering relation
rather than an equivalence relation, but the underlying principle is the same.  This
mechanism also addresses the  concepts  of  rings  and  privilege states, in which a
process is granted access to successively greater numbers of resources as its label
increases in value according to some ordering relation.

The underlying concept of labels has analogies to capabilities in the sense that the
subject has ``possession'' of a particular value which gives the subject access to certain
objects.  As with capabilities, the  subject  cannot  change the value stored in the label;
unlike capabilities, the subject can only have one access label value per rule set at  a
given time.  For example, a  user  may  be  cleared  to  the Secret level, but if he has
logged on  at  the  Unclassified level, the rule set will not allow him to access data at the
Secret level.

A label is a relatively simple mechanism that can serve as the basis for a number of
more complex  mechanisms.   The principal limitation is that a subject  can  only  have
one access label value per rule set at a given time.  This  fact limits the flexibility of  the
mechanism.   Increasing  the number of labels per subject or object limits their benefit,
since  complexity  of  label  assignment  rapidly  increases unless a structured
mechanism such as  capabilities,  access control lists, or access control triples is used
instead.

4.4 POLICY OF FAULT TOLERANCE

Systems that support mission-critical applications must not only preserve integrity to
the extent possible, but also must detect and attempt to correct integrity  failures  that
result from unavoidable situations, such as  physical  failures of equipment or media.
Systems which do this support a policy of fault tolerance.

The policy of fault tolerance potentially involves  two parts.  The first part is the
detection of  errors.   Detection is necessary for a system to determine when  a  failure
has occurred.  Detecting errors that are  corrected  by  the system is as essential as
detecting failures that cannot  be corrected, since such failures may indicate a potential
degradation of system performance, or  may  indicate  that  the system is approaching a
threshold at  which  errors  are  no longer correctable.  We will discuss  fault  tolerant
error detection mechanisms under the policy of  summary  integrity checks.  The second
part of the policy of fault tolerance is the attempted correction of errors.  We will  discuss
fault tolerant error correction mechanisms  under  the  policy  of error correction.

4.4.1 Policy of Summary Integrity Checks

All mechanisms supporting the policy of summary  integrity checks provide a
``second copy'' of  a  group  of  data against which the first copy may be  compared  in
order  to detect changes.  Nearly all of these mechanisms  operate  by producing a
smaller piece of data which is computed from the collection of data whose integrity is to
be verified.   This approach has an inherent weakness because reducing the  size of the
summary data will  result  in  loss  of  information, except to the extent that the original
data has redundancies which can be removed by data  compression  techniques.   The



result is there will be more than one value of the  original data for which the summary
data is identical, and  by  judiciously changing the original  data,  the  computed
summary data may still indicate that the data  is  unchanged.   This ``judicious changing''
type of attack is used by some  virus programs to circumvent checksum programs
intended to  detect the viruses.  We describe five summary integrity check mechanisms
below:  transmittal lists,  checksums,  cryptographic checksums, chained checksums, and
the check digit.

4.4.1.1 Mechanism of Transmittal Lists

When  batches  of  data  are  stored   or   transmitted together, a transmittal list may
be attached  to  the  data. This list identifies what data are included  in  the  batch, and
may be used to verify that no data are missing.   Transmittal lists are used to provide
confirmation that  all  the components of a multipart data object are  present,  but  do not
generally provide for detection of modification  of  the components still present, unless
combined with  other  techniques.  The same is true with data counts, a generalization of
a transmittal list in which simple  counts  of data are used to ensure  that no data are
missing.   Data  counts are weaker than transmittal lists in the sense that they do  not
provide  information on missing components.

4.4.1.2  Mechanism of Checksums

When a block of data is transferred from one  point  to another, a checksum is often
added to the block of  data  to help detect errors.  A checksum is a numeric value  that  is
computed based on the entire contents of the data.  When the original data is  created,  a
checksum  is  calculated  and appended to it.  The checksum is then regenerated  when
the data is received at its destination  or,  in  some  applications, when the data is read
from memory.   The  regenerated checksum and the original  checksum  are  then
compared  to determine if an error has occurred.  Checksums do not,  however, protect
the data from destruction; they only provide a means for detecting when the data has
been tampered with.

A checksum is one of the stronger mechanisms for integrity checking.  It can be very
difficult for an adversary to change the data without causing the checksum  computed
from the changed data to be different from the checksum  computed from the original
data.  There are two properties of  checksums that must be considered.  First, checksums
need  to  be accompanied by other mechanisms (e.g., time stamps) to  prevent replay.
Second, it must be realized that if the check- sum has fewer bits (contains less
information) than the data itself, there will always be more than one value of the data
that will result in the same  checksum  value.   Given  this fact, the function used to
compute the  checksum  should  be such that changing a single, small portion of the data
will result in a high probability that the checksum will  change. Also, the set of all
possible values of the data should produce all possible values of the checksum, with the
probability of generating a given checksum being evenly  distributed for all possible
values of the data.



4.4.1.3 Mechanism of Cryptographic Checksums

     When data is transmitted over  an  open  communications medium, where both the
data and the checksum are exposed  to modification,  the  original  data  may  be
vulnerable   to undetected modification.  An adversary may be able to modify the data,
recalculate the checksum, and store them in  place of the original pair.  To counteract
this  threat,  cryptographic techniques are used.  Once a checksum  is  computed, it is
encrypted with a protected encryption ``key.''  If the checksum is encrypted, an
adversary must gain access to  the encryption algorithm and key to change the checksum
to indicate that the data  is  still  unmodified.   With  protected keys, the encryption
algorithm may be assumed to be known or discoverable by the adversary without harm
as  long  as  the specific key remains unknown.  Keeping  both  the  algorithm and the
keys protected increases  the  work  factor   of  the adversary  in  attacking  the system,
but  may also   increase the cost of the system.

4.4.1.4 Mechanism of Chained Checksums

Checksums (either conventional or cryptographic),  when applied to sequenced data,
may be made  a  function  of  the previously seen data.  In accounting, these  chained
check- sums are termed run-to-run totals.  For example, a  checksum may be computed
across multiple data, each of  which  has  a checksum itself.  This method is used to give
assurance  via a single number that all preceding data is unaltered.   However, as the
amount  of  data  included  in  the  chain  or sequence increases, the  probability  of
undetected  errors increases because there are more data values that will  give the same
checksum as the number of bits of data increases in comparison to the number of bits  of
the  checksum.   Thus, chained checksums have the advantage that  they  can  detect
deletion of portions of the data, but have the  disadvantage that the size of the data being
checked can become large  in proportion to the size of the checksum.

4.4.1.5 Mechanism of the Check Digit

A check digit is simply a special case of  a  checksum, where the checksum is a single
digit.  It is  normally  used only to check for gross unintentional errors, such  as
mistyping of a numeric identifier code.  A check digit does not provide much protection
against malicious attacks or against noisy transmission lines because the  probability  is
relatively high that even a randomly chosen digit will occasionally be correct.  A ``parity
bit'' is an example of a binary check digit.



4.4.2 Policy of Error Correction

In addition to simply detecting incorrect data,  it  is possible to use methods to correct
errors in the data.   The simplest approach to error detection would be to  provide  a
certain number of redundant copies of the data, possibly  by different channels, and then
compare these at the time  when it is desired to determine whether the  data  integrity
has been violated.  This concept can be extended to  error  correction if it is possible to
tell  which  of  the  redundant copies of the data has not been altered.  Various error
correction methods give varying probabilities of retrieving the original, unaltered data.
We describe two of  these  redundant  copy  methods  below:  duplication protocols   and
handshaking protocols.

The process of providing redundant data can be improved upon in terms of
efficiency if assumptions  are  made  about the types of errors likely to occur.  In
particular,  if  it is expected that only a small portion of any  one  block  of data is likely to
be altered, it is possible to  reduce  the amount of redundant data that has to be sent  in
proportion to the number of bits of data expected to be changed.  Error correcting codes
can be used  to achieve   error  correction  with  less  than  a  completely redundant copy
of  the  original data.

4.4.2.1 Mechanism of Duplication Protocols

In environments in which there  is  only  one-way  data communication, such as data
distributed  by  one-way  radio broadcast, duplication protocols are used.  These
generally involve duplicating  the  data  being  sent.   One  approach involves
duplication in time, re-sending the same data value several times, along with check
information.  For example, a standard data protocol used in  commercial  shipping
communications involves representing each distinct data value  as a binary number, the
sum  of  whose  digits  is  a  constant number, and sending small groups of consecutive
values  several times.  If it is found that one of the data values consists of digits that do
not add  up  to  the  constant,  the value is assumed incorrect, and one of the redundant
copies of the data is tried.  By timing the resending of  redundant information according



to known  error-generating  properties of the medium, it is possible to  minimize  the
probability that all copies of the data value will  be  in  error.   The sending of small
groups of values several times rather  than immediately repeating each value before
proceeding  to  the next serves to increase the likelihood  that  an  error-generating
phenomenon will have  abated  before  the  data  are resent.

Another approach to duplication of one-way data  is  by sending it by multiple
media.  In the case of  radio  transmissions, the data may be sent on several frequencies
at the same time, since phenomena that interfere with communication on one frequency
often do not affect a  different  frequency at the same time.  In the case  of
communications  by  networks, the data can be sent simultaneously by several paths.
These approaches are essentially a form  of  redundant  processing.

The simple redundancy exemplified by duplication protocols has a principal benefit
of simplicity;  the  algorithms needed to regenerate the data are simpler than those of
more compact error correction codes, and  the  density  of  error allowed may be greater.
Use of a diversity of  media  likewise allows for a greater density of errors; one or more
of the redundant channels may fail completely as  long  as  one other channel continues
to function without error.  But considerably more hardware resources may be required
for  such an approach to duplicate all the components that may fail.

4.4.2.2 Mechanism of Handshaking Protocols

Handshaking protocols are one of  the  most  frequently seen approaches to error
correction where two-way communication exists, as in computer networks.  In
handshaking protocols, a block of data is sent, along with a check value  for use with a
summary  integrity  check  mechanism;  the  check value is used to check the transmitted
block  for  error  on the receiving end.  A reply is then returned to  the  sender indicating
whether or not  the  received  data  checked  as valid.  If an error is detected,  the  receiver
repeatedly requests the data until it is received  without  error.  An example of a
handshaking protocol  is  the  X.25  protocol  used  in  hardwired   and radio-based
communications networks.

This protocol is complicated by the  fact  that  either messages or replies may be
entirely lost, and  thus  such  a protocol must  handle  non-responses  as  well  as
negative responses.  This is the reason that messages indicating successful transmission
are  returned,  not  just  unsuccessful transmission.  Furthermore, efficient use of the
communications medium may require that long delays  not  be  incurred waiting for a



reply to come back from the receiver; in  such a case, later blocks of data may be sent
while  awaiting  a reply to the first block.  If a reply eventually comes  back indicating
that a given block was not received,  it  can  be resent out of sequence.  This in turn
requires use  of  the chained checksum mechanism discussed earlier, to ensure that all
blocks are received and are put in the proper order.

To avoid building up an  excessive  backlog  of  unacknowledged messages, there is
usually a ``window'' of  unacknowledged messages that are allowed to  be  outstanding;
if more messages would be sent than are allowed by this  limit, sending stops until the
backlog is filled.   Some  protocols which allow sending messages in two directions at
the  same time obtain further efficiency by combining  acknowledgement messages for
data messages going in one direction with  data messages going in the opposite
direction,  and  vice  versa. The design of these protocols can become quite complex,  but
the area is well researched and can result in very efficient protocols.  On the other hand,
an isolated error in  a  message may require the entire message to be resent,  and  thus
the size of the message unit in proportion to the  frequency of errors is an important
consideration in  designing  these protocols.  This mechanism is commonly  used  in
supporting the  real-time  requirements  of  most   computer   systems, although it is
omitted from  certain  high-performance  computer systems.

4.4.2.3  Mechanism of Error Correcting Codes

     Duplication and handshaking protocols assume that failure occurs at an
intermediate point beyond the sender of the data.  If the sender's copy of the data  is
damaged,  these protocols will not be able to recover the  data.   Thus,  an error
correcting code must be used  on  the  original  copy. For example, Hamming codes
employ the concept of overlapping parity to achieve error correction of original data.

The Hamming single error correcting code is  formed  by partitioning the original
data bits into parity  groups  and specifying a parity bit for  each  group.   The  ability  to
locate which bit is erroneous is obtained by overlapping the groups of bits.  A given data
bit will appear in  more  than one group in such a way that if the bit  is  erroneous,  the
parity bits that are in error  will  identify  the  erroneous  bit. For  example,   suppose  that
there  are   four  data  bits (d3,d2,d1,d0) and, as a  result,  three  parity  check  bits



(c1,c2,c3).   The  bits  are  partitioned  into  groups   as (d3,d1,d0,c1), (d3,d2,d0,c2), and
(d3,d2,d1,c3).  Each check bit is specified to set the parity, either even or  odd,  of its
respective group.  Now, if bit d0, for example, is erroneous, both c1 and c2 are incorrect.
However, c3 is correct because the value of d0 has no impact on the  value  of  c3.
Therefore, the error in bit d0 can be corrected.

Typically, an error correcting code is  used  to  allow some limited portion of the
original message  to  be  regenerated, given the correct value of  the  remaining  portion.
As the amount of lost information that the code is  supposed to be capable of
regenerating increases, the  size  of  this code increases, so a tradeoff is made based on
the  expected rate of error in the data.  If the  error  rate  is  low,  a smaller code may be
used, since the probability of  a  large number of errors in a single block decreases.

5 INTEGRITY MODELS AND MODEL IMPLE-
MENTATIONS

A computer security model is a high-level specification or an abstract machine
description of  what  a  system  does [Goguen 1982]; it provides a framework for linking
a  security policy (security requirements for a  given  system)  to the mechanisms that are
used to implement the policy.  While models describe what types of mechanisms  are
necessary  to satisfy an integrity policy, model implementations  describe how specific
mechanisms can be used together in a system  to achieve integrity protection required by
a particular  security policy.  Several models and model  implementations  are examined
in this chapter.

5.1 INTEGRITY MODELS

In this section, we describe and analyze five models that suggest different
approaches  to  achieving  computer  integrity:  Biba, Goguen and Meseguer, Sutherland,
Clark and  Wilson, and Brewer and Nash. (footnote #1)  Three of these models  (Goguen
and Meseguer's, Sutherland's, and Brewer  and  Nash's)  were  not originally intended as
integrity models, but we show how  they can be viewed as applying to the  needs  of
integrity.  Although  all  five  of  these  approaches  establish  sound  restrictions for
limiting the manipulation of data, we  have  not been able to empirically determine
whether  any  of  the  models are complete or sufficient with respect to integrity.

[1] The Clark and Wilson  model  is  not  stated  in  formal  mathematical terms
like the others,  but  formal  axioms  are  not  necessary  to  compare  the   ad-
vantages   and  disadvantages of each model.



5.1.1 Biba Model

5.1.1.1  Discussion of Biba

The model defined in [Biba 1977] was the first  of  its kind to address the issue of
integrity in computer  systems. This approach is based on a hierarchical lattice  of  integ-
rity levels.  The following basic elements are used to mathematically define the Biba
model:

S: the set of subjects  s;  the  active,  information  processing elements of a
computing system;
O:  the set of  objects  o;  the  passive  information  repository elements of
a  computing  system  (the  intersection of S and O is the null set);
I: the set of integrity levels;
il: S x O ==> I;  a function  defining  the  integrity  level  of  each  subject
and  object;  defines  a  lattice under the relation leq;
leq: a relation (subset of I x I)  defining  a  partial  ordering ``less than or
equal''  on  the  set  of  integrity levels I;
min: POWERSET(I) ==> I, a function returning the greatest  lower bound
(meet) of the subset of I specified;
o: a relation (subset of S x O) defining the capability of a subject, s
element_of S, to observe  an  object,  o element_of O:  s o o;
m: a relation (subset of S x O) defining the capability of a subject, s
element_of S, to modify an object,  o element_of O: s m o;  i:a relation (sub-
set of S x S) defining the capability of a subject, s1 element_of S, to invoke
another subject, s2 element_of S:  s1 i s2.

Integrity is evaluated at the subsystem level.  A  subsystem  is some subset of a
system's subjects and  objects  isolated  on the basis of function or privilege; a computer
system  is  defined to be composed of any number of subsystems,  including only one.
Integrity threats are classified by  Biba  as  being either internal or external to a
subsystem.  An internal threat arises if a component of the subsystem  is  malicious or
incorrect. An external threat is posed by one  subsystem attempting to change
(improperly)  the  behavior  of  another by supplying false data or improperly invoking
functions. Biba feels internal threats are sufficiently  handled  by program testing and
verification  techniques;  the  Biba  model then only addresses external threats.

The Biba model elements support five  different  integrity policies, which are
described  below:   the  Low-Water  Mark Policy, the Low-Water Mark Policy for Objects,
the Low-Water Mark Integrity Audit Policy, the Ring Policy, and  the  Strict Integrity
Policy.  There is a  sixth  policy,  called  the Discretionary Integrity Policy, based on
ACLs  and  the  Ring Policy that actually describes a specific proposal  for  modelling
integrity protection in the Multics operating  system.  Since ACLs are discussed earlier
and the  Ring  Policy  is discussed here, the Discretionary Integrity Policy is not
addressed separately.



5.1.1.1.1 Low-Water Mark Policy

In this policy, the integrity level of a subject is not  static, but is a function of  its
previous  behavior.   The  policy provides for a dynamic, monotonic, and non-increasing
value of il(s) for each subject.  The value of il(s), at any  time, reflects the low-water mark
of the  previous  behavior  of the subject.  The low-water mark is the  least  integrity  level
of an object accessed for observation by the  subject,  and is formalized by the following
axioms:

for_all s element_of S, o element_of O
s m o ==>  il(o) leq il(s)

for_all s1,s2 element_of S
s1 i s2 ==> il(s2) leq il(s1)

For each observe access by a subject s to an object o:
il'(s) = min {il(s), il(o)}

where il'(s) is the integrity level of s immediately following the access.

5.1.1.1.2 Low-Water Mark Policy for Objects

In addition to changing the  integrity  level  of  subjects, the Low-Water Mark Policy
for Objects postulates that  the integrity level of modified objects also changes.   This
alternate policy  can  be  characterized  by  the  following  rules.

For each observe access by a subject s to an object o:

il'(s) = min {il(s), il(o)}

For each modify access by a subject s to an object o:
il'(o) = min {il(s), il(o)}

5.1.1.1.3 Low-Water Mark Integrity Audit Policy

This audit policy is an unenforced variant of the  Low-Water Mark Policy for Objects.
It  provides  a  measure  of  possible corruption of data with ``lower''  integrity  level
information.  A ``current corruption level'' (cl)  for  subjects and objects is defined in the
following manner.

For each observe access by a subject s to an object o:
cl'(s) = min {cl(s), cl(o)}

For each modify access by a subject s to an object o:
cl'(o) = min {cl(s), cl(o)}

The value of cl for an object represents the least integrity  level of information which
could have been  used  to  modify  the object.



5.1.1.1.4 Ring Policy

The Ring Policy provides kernel enforcement of  a  protection policy addressing
direct modification.   The  integrity levels of both subjects and objects  are  fixed  during
their lifetimes and only modifications of  objects  of  less  than or equal integrity level are
allowed.   Flexibility  of  the system is substantially increased by  allowing  observations
of objects at any  integrity  level.   The  policy  is  defined by two axioms:

for_all s element_of S, o element_of O
s m o  ==>  il(o)  leq il(s)

for_all s1,s2 element_of S
s1 i s2 ==>   il(s2) leq il(s1)

5.1.1.1.5 Strict Integrity Policy

The Strict Integrity Policy is the mathematical dual of  the confidentiality  policy
presented  in  the  TCSEC  [DOD  1985].  It consists of three parts:  a Simple Integrity
Condition, an Integrity *-property, and an Invocation Property.  The Simple Integrity
Condition states that a subject  cannot  observe objects of  lesser  integrity.   Written  in
Biba's  mathematical notation

for_all s element_of S, o element_of O
s o o  ==>  il(s)  leq il(o)

This rule constrains the use of objects (data or procedures)  to those whose non-
malicious character (by virtue  of  their  integrity level) the subject can attest (those
objects  having an integrity level greater than or equal to that of  the  subject).  Biba
considers execute access to be equivalent to  observe access, so objects  must  have  an
integrity  level  greater than or equal to that of the requesting  subject  in  order to be
executed.

The Integrity *-property states that a  subject  cannot  modify objects of higher
integrity.  Written in Biba's notation

for_all s element_of S, o element_of O
s m o  ==>  il(o)  leq il(s)

This rule ensures that objects may not be directly  modified  by subjects possessing
insufficient  privilege.   The  rule,  however, assumes that the modifications made by  an
authorized subject are all at the explicit  direction  of  a  non-malicious program.  The
unrestricted use of subsystems written by arbitrary users (to whose non-malicious
character the  user cannot attest) does not satisfy  this  assumption;  the  Simple Integrity
Condition  guarantees  this  assumption  is  satisfied.

The Invocation Property states that a subject  may  not  send messages to subjects of
higher  integrity.   Mathematically, the integrity level of the receiving subject must  be
less than or equal to the integrity  level  of  the  sending  subject:



for_all s1,s2 element_of S
s1 i s2  ==>   il(s2) leq il(s1)

Invocation is a logical request for service from one subject  to another.  Since the
control state of the invoked  subject  is a function of the fact  that  the  subject  was
invoked,  invocation is a special case  of  modification.   Therefore,  this rule follows
directly from the Integrity *-property.

5.1.1.2 Analysis of Biba

Biba defines integrity as a relative measure; it is not  absolute.   According  to  this
definition,   a   subsystem  possesses the property of integrity if it can be trusted  to
adhere to a well-defined code  of  behavior.   No  a  priori  statement as to the properties
of this behavior are relevant  to determining whether or not the subsystem possesses
integrity; all that is required is that the subsystem  adhere  to  the code of behavior.  For
this model, the goal of  computer  system integrity is thus the guarantee that a subsystem
will  perform as it was intended to perform by its creator.

This is a rather  broad  interpretation  of  integrity.  The goal of every computer
system should be to perform as it  was intended to perform; the real issue is whether the
creator designed the system in a manner that can achieve integrity.  The Biba model
provides a  hierarchical  lattice  for  identifying authorized users and providing
separation at the  user type level.  These attributes allow the Biba  model  to  address the
first goal of integrity identified at the beginning of the paper:  preventing unauthorized
users from  making modifications.

Of the integrity policies discussed by Biba, the Strict  Integrity Policy is by far the
most  widely  addressed,  so  much so that this policy is  often  assumed  when  the  Biba
model is discussed.  The Strict Integrity Policy is the dual  of one of the most common
and most thoroughly  studied  computer security policies/models, Bell and LaPadula.

A drawback to Biba's Strict Integrity Policy is how  to  assign appropriate integrity
labels.  The Bell and  LaPadula  model fits the government classification system (e.g.,
hierarchical levels like Top Secret and Secret, and  non-hierarchical categories like
NATO).  There  are  established  criteria for determining which disclosure levels and
categories  should be given to both personnel (subjects)  and  documents  (objects).
There are currently  no  corresponding  criteria  for determining integrity levels and
categories.   In  fact,  the use of hierarchical  integrity  levels,  which  suggests  that some
determination will be made about  the  ``quality''  of data and the ``quality'' of users,
seems inapplicable  to  most practical problems.



5.1.2   GOGUEN AND MESEGUER MODEL

5.1.2.1  Discussion of Goguen and Meseguer

Goguen and Meseguer [1982]  introduce  an  approach  to  secure systems that is
based on automaton theory and  domain  separation.  Their approach is  divided  into
four  stages:  first, determining the security needs of a given  community;  second,
expressing those needs as a formal security  policy;  third, modelling the system which
that community is (or  will  be) using; and last, verifying that this model satisfies the
policy.  Their paper focuses  on  stages  two  (policy)  and  three (model); this discussion
focuses on the model.

Goguen and Meseguer distinguish sharply between a security policy and a security
model.   A  security  policy  is  defined as the security  requirements  for  a  given  system
(based on the needs of the community).  In general, security  policies are very simple,
and should be easy to state in  an  appropriate formalism.  Goguen [1982, p 11] provides
a  very  simple requirement language for stating  security  policies,  based on the concept
of noninterference, where

one group of users, using a certain  set  of  commands, is noninterfering
with  another  group  of  users if what the first group does with those com-
mands has no effect on what the  second  group  of  users can see.

A security model is defined as an  abstraction  of  the  system itself; it provides a basis
for  determining  whether  or not a system is secure, and if  not,  for  detecting  its  flaws.
A high-level specification or  an  abstract  machine  description of what the system does
are examples of a  security model.  The authors develop a set theoretic model which  is a
sort of generalized automaton,  called  a  ``capability  system.''  They achieve
noninterference by separating  users  into different domains; a domain is defined as  the
set  of  objects that a user has the ability to access  [NCSC  1988].  The Goguen and
Meseguer model has an ordinary state  machine  component, along with a capability
machine  component  which  keeps track of what actions are permitted to what users.

5.1.2.1.1 Ordinary State Machine Component

The model is introduced by starting  with  the  classic  case in which what users are
permitted to do does not change  over time.  It is assumed that  all  the  information
about  what users are permitted  to  do  is  encoded  in  a  single  abstract ``capability
table.''  The system  will  also  have  information which is not concerned with what  is
permitted;  this information will include users'  programs,  data,  messages, etc.  In the
Goguen and Meseguer  model,  a  complete  characterization of all such information is
called  a  state  of the system, and S is defined  as  the  set  of  all  such  states.  The system
will provide commands that change  these  states; their effect can be described by a
function



do:  S x U x C  ->  S

where C is the set of state changing commands and U  is  the  set of users.  It might be
that if user u is  not  permitted  to perform a command c, then do(s,u,c) =  s;  such
security  restrictions can be implemented by consulting the capability  table, and are
simply assumed to be built into the  function  do.

It is also assumed that for a given state and user,  we  know what output (if any) is
sent to that user.  This aspect  of the system can be described by a function

out:  S x U  ->  Out

where Out is the set of all possible outputs  (e.g.,  screen  display states, listings, etc.).  It
is  assumed  that  all  information given to users by the system is encoded in  this
function.  Putting this all together and adding  an  initial  state, the result is an ordinary
state machine M  consisting  of the following:

 a.  A set U whose elements are called ``users.''
 b.  A set S whose elements are called ``states.''
 c.  A set C whose elements are called ``state commands.''
 d.  A set Out whose elements are called ``outputs.''

together with

a.  A function out:  S x U  ->  Out which  ``tells  what  a given user sees
when the machine is in a given state,''   called the output function.
b.  A function do:  S x U x C   ->   S  which  ``tells  how states are updat-
ed  by  commands,''  called  the  state transition function.
c.  A constant s0, the initial machine state, an element of S.

The connection with the standard form of the  definition  of  state machine is to take
U x C to be the set of inputs.

5.1.2.1.2 Capability Machine Component

In order to handle the  dynamic  case,  in  which  what  users are permitted to  do  can
change  with  time,  it  is  assumed that in addition to the state machine features there  are
also  ``capability  commands''  that  can  change   the  capability table.  The  effects  of
such  commands  can  be  described by the function



cdo:  Capt x U x CC  ->  Capt

where Capt is the set of all possible capability  tables,  U  is the set of all users, and CC is
the  set  of  capability  commands.  If a user u is not allowed to perform  the  capability
command c on the table t, the cdo(t,u,c) may be  just  t again; as before, this security
restriction is  determined  by consulting the capability table.  The capability  machine
component is itself a state machine, with state set Capt and  input set U x CC; it models
the way in which the  capability  table is updated, and includes such possibilities as
passing  and creating capabilities.

5.1.2.1.3 Capability System

The entire capability system is a cascade connection of  the capability machine
component  with  the  ordinary  state  machine component.  In Figure 2,  illustrating  the
cascade  connection, the function Check returns the information  from  the capability
table needed to determine whether  or  not  a  given command is authorized for a given
user.

(Figure 2. Not available for electronic version.)

Figure 2.  Cascade Connection of Capability System

In order to distinguish capability commands from  state  commands, the definition of
a capability system denotes  the  set of all state commands by SC.  So that the state
transitions and the outputs can be checked  for  security  against  the capability table, a
capability table component is  added  to the state transition function and to the output
function.  Adding all this to  the  definition  of  an  ordinary  state  machine, and also
adding an initial  capability  table,  the  result is a capability system M consisting of the
following:

a) A set U whose elements are called ``users.''
b) A set S whose elements are called ``states.''
c) A set SC whose elements are called ``state commands.''
d) A set Out whose elements are called ``outputs.''
e) A set  Capt  whose  elements  are  called  ``capability  tables.''
f) A set CC whose elements are  called  ``capability  commands.''

together with
a A function out:  S x Capt x U  ->   Out  which  ``tells what a given

user sees when the machine, including  its capability component, is in
a given state,'' called the output function.



b) A function do:  S x Capt x U x SC  ->  S which  ``tells  how states are
updated by commands,'' called the  state  transition function.

c) A function cdo:  Capt x U x CC  ->  Capt which  ``tells  how capabili-
ty tables are updated,'' called  the  capability transition function.

d) Constants t0 and s0, the ``initial  capability  table''  and  the  ``initial
machine   state,''   respectively  elements of Capt and of S.

5.1.2.2 Analysis of Goguen and Meseguer

Goguen and Meseguer's model is based on automata theory  with all of the state
transitions  predefined.   The  predefined transitions address the first goal of integrity
(preventing unauthorized users from  making  modifications).   A  significant advantage
of having the model based on  a  standard notion like the automaton is that extensive
literature  and well-developed intuition become  immediately  applicable  to the problem
domain.  The fact that the states and  corresponding transitions are predefined is both a
blessing and a  curse.  It is a great advantage to  know  exactly  what  the  system will do
at any  particular instant.  However, it  will be very  difficult to  define all of the states
and all of the transitions from one  state to another.  It will also be  difficult  to design the
system in a flexible manner so that new states can be easily  added to the existing design.

Capabilities (as opposed to  descriptors)  provide  the  flexibility necessary to
implement domain  separation.   But  traditional capabilities  cannot  control  the
propagation,  review, and revocation of access privileges  [Gligor  1987].  It is unclear
whether traditional capabilities can be  modified to realistically overcome these
weaknesses.

5.1.3  SUTHERLAND MODEL

5.1.3.1  Discussion of Sutherland

Sutherland [1986] presents a model of information  that addresses the problem of
inference (e.g., covert  channels). Sutherland uses a state machine as the basis of  his
model, but he generalizes the model, apparently to  avoid  limiting it to the semantic
details of one particular type  of  state machine.  Thus, his state machine consists of the
following:

a) A set of states
b) A set of possible initial states
c) A  state  transformation  function  mapping  states  to states

For each possible initial state, there is an  execution sequence defined for each
sequence of possible state  transformations starting from  that  initial  state.   Sutherland
generalizes the state machine's set of  execution  sequences as a set W of all such
execution sequences, which  he  terms ``possible worlds.''  A given execution sequence
or  ``possible world''  is  denoted  w,  where  wW.   The  ``possible world'' of Sutherland's



model is actually even more abstract than we have represented here. As illustrated in  a
``state machine  instantiation''  appearing  later  in   [Sutherland 1986], under one
interpretation of the model, an  element  w of the set W may consist not only of states,
but  of  ``signals'' (analogous to the ``requests'' and  ``decisions''  of the Bell-LaPadula
model) interspersed between the states.

Sutherland formally represents the information  obtainable from a subsequence of w
by defining a set  of  information functions, fi.  Each fi represents the information that
can be obtained from one view of w. For  example,  assume  a user has full access to the
subsequence of w needed to  compute f1(w).   If  this  user  knows  of  an
interdependence (covert channel) between f1 and  another  information  function, f2, to
which the user may have been prohibited access, the user can infer at least  some
information  about  f2(w) from the user's knowledge  of  f1(w).   Sutherland  presents this
inference formally as follows.

1. The user knows f1(w)=x.
2. The user deduces w element_of S where S={y|f1(y)=x}.
3. The user deduces f2(w) element_of T where T=f2(S).
4. If there is an interdependence between f1 and  f2  such that

there_exists z element_of f2(W)[z not_element_of T]
the user deduces

f2(w) =/= z.

Steps 1-3 above  are  straightforward  generalizations  from what the user knows of
f1; the f2 in  step  3  could  be  an arbitrary function, and calling it f2 in step 3 only antici-
pates step 4.

It is in step 4 that the  user  makes  the  significant inference.  The  inference  results
specifically  from  the user's knowledge that when the result of a particular subsequence
of states is seen, it is impossible for the system to have produced the result z.  In such a
case,  the  user  is able to conclude that the system has not produced a particular result to
which the user may  have  been  denied  direct access.  The  extent  to  which  this
inference  is  useful depends on how much information is  represented  by  knowing that
result z was not produced.  If the user knows that only two results are possible, knowing
``not z'' would be of considerable value.  Since the Sutherland model is so  general, it
does include this and similar inferences.

A concrete example of such an inference  would  be  the observation ``when program
1 produces result  x,  due  to  a flaw in the system, program 2  will  be  unable  to
compute result z.''  Or, ``while the weapons control system is under test, the target
tracking system will not  recognize  a  new target.''  Sutherland defines the case in which
information flows from f1 to f2 as the case in which a user seeing f1(w) is able to infer
that f2(w) =/= z.



Sutherland goes on to prove a theorem identifying cases in which inference is
possible (specifically, cases in which f1 and f2 are dependent), and from this theorem
derives  an important corollary:  that information flows are always symmetric.  This
corollary has importance to integrity since it shows that the user who can control the
computation  of  f1 can influence the result  of  f2.   This  situation  can  be thought of as
a reverse covert channel.

5.1.3.2  Analysis of Sutherland

Sutherland's  corollary  that  information  flows   are always symmetric suggests that
the model may  have  applicability to integrity.   Sutherland  speaks  in  terms  of  an
observer noting that the value of one  information  function f1 influences another
information function f2's set of  possible values at a given point in time.  If a user can
influence the subsequence w which is the argument to f1,  and  if information flows from
f1 to f2, the user can at least  partially influence the value resulting from f2.  In  terms  of
our previous example, a user who is able to initiate a  test of the weapons control system
will be able to cause the target tracking system to malfunction, even though testing  may
have been thought to be a  harmless  operation.   Thus,  the Sutherland model addresses
the  first  goal  of  integrity: preventing unauthorized users from making modifications.

The type of  integrity  violation  represented  in  the Sutherland model is analogous to
a traditional covert  channel.  Whereas a covert channel communicates data from within
a protection domain that should be inaccessible to  an  outsider, a violation of the type
represented by the Sutherland model allows an outsider to influence the  outcome  of
processing occurring within an otherwise  inaccessible  protection domain.

The Sutherland model differs from some other  integrity models in that it does not
emphasize  a  specific  abstract protection mechanism.  In the last section  of  the  model's
exposition [Sutherland 1986, p 177], Sutherland does  define a legal_to_get predicate
which  represents  abstract  access control, and the formal definition of security is given
as

information_flows(f2,f1)==>legal_to_get(f1,f2).

Since f1 can be an abstraction  for  a  subject  (i.e.,  the information ``known'' by the
subject  or  in  the  subject's memory), this predicate can  represent  access  restrictions
placed on a particular subject, as well as information  flow restrictions between
individual data repositories,  such  as files or ``objects''.  But the Sutherland model is
primarily involved with representing the  goal  of  protection  rather than with a means
of enforcing it.



5.1.4 CLARK AND WILSON MODEL

5.1.4.1 Discussion of Clark and Wilson

Clark and Wilson [Clark 1987, 1989] make a  distinction between military  security
and  commercial  integrity,  and present a model for achieving data integrity.   They
defend two conclusions.  First, security policies related to integrity, rather than
disclosure, are of highest priority in the commercial data processing  environment.
Second,  separate mechanisms are required for enforcement of  these  policies, disjoint
from those in the TCSEC [DOD 1985].  This model has sparked the information systems
and computer security communities to press forward with integrity-related research.

There are two keys to the Clark  and  Wilson  integrity policy:  the well-formed
transaction and separation of duty. A well-formed transaction is structured so that a user
cannot manipulate data arbitrarily,  but  only  in  constrained ways that preserve or
ensure the internal consistency of the data.  Separation of duty attempts to  ensure  the
external consistency of data objects:  the correspondence  between  a data object and the
real world object it  represents.   This correspondence  is  ensured  indirectly  by
separating  all operations into several subparts  and  requiring  that  each subpart be
executed by a different person.

The Clark and Wilson model is defined in terms of  four elements:  constrained data
items (CDIs), unconstrained data items (UDIs), integrity verification procedures (IVPs),
and transformation procedures (TPs).  CDIs are data items within the system to which
the integrity  model  must  be  applied. UDIs are data items not covered by the integrity
policy that may be manipulated arbitrarily, subject only to  discretionary controls.  New
information is fed into the system  as  a UDI, and may subsequently be transformed into
a  CDI. IVPs and TPs are two classes of  procedures  that  implement  the particular
integrity policy.  The purpose of an  IVP  is  to confirm that all of the CDIs in the system
conform  to  the integrity specification at the time the IVP is executed.  An IVP checks
internal data consistency, and  also  may  verify the consistency between CDIs and
external reality.  TPs correspond to the concept of well-formed transactions discussed
above.  The purpose of TPs is to change the set of CDIs from one valid state to another.

There are nine certification (C)  and  enforcement  (E) rules that govern the
interaction of these  model  elements. Certification is done by the security officer, system
owner, and system custodian with respect to  an  integrity  policy; enforcement is done
by the system.  The rules are stated  as follows:

C1: All IVPs must properly ensure that all CDIs are in a valid state at the
time the IVP is run.
C2:  All TPs must be certified to be valid.   That  is, they must take a CDI
to a valid final state, given that it is in a valid state to  begin  with.   For
each TP, and each set of CDIs that it may  manipulate, the security officer
must  specify  a  relation, which defines that execution.  A relation is thus
of the form:  (TPi,(CDIa,CDIb,  CDIc,  ...)), where the list of CDIs defines a
particular set of arguments for which the TP has been certified.



E1:  The system must maintain  the  list  of  relations specified in rule C2,
and must ensure that the only manipulation of  any CDI is by a TP, where
the TP is  operating on the  CDI as  specified  in  some relation.
E2:  The system must maintain a list  of  relations  of the form:  (UserID,
TPi, (CDIa, CDIb, CDIc, ...)), which relates a user, a TP, and the  data  ob-
jects that TP may reference on behalf of that user.   It must ensure that
only executions described in  one of the relations are performed.
C3:  The list of relations in E2 must be  certified  to meet the separation of
duty requirement.
E3:  The system must authenticate the identity of  each user attempting to
execute a TP.
C4:  All TPs must be certified to write to  an  append-only CDI (the log)
all  information  necessary  to permit the nature of the operation  to  be  re-
constructed.
C5:  Any TP that takes a UDI as an input value must  be certified to per-
form only  valid  transformations, or else no transformations, for any possi-
ble value of the UDI.  The transformation  should  take  the input from a
UDI to a CDI, or the UDI is rejected.
E4:  Only the agent permitted to certify  entities  may change the list of
such entities  associated  with other entities:  specifically, the entities  asso-
ciated with a TP.  An agent that  can  certify  an entity  may  not  have
any  execute  rights  with respect to that entity.

Together, these nine rules define a system that  enforces  a consistent integrity policy.

The ultimate goal of the Clark and Wilson model  is  to stimulate the development of
better  security  systems  and tools in the commercial sector.  The  authors  suggest  that
the first step toward this goal would be to  develop  a  new set of criteria that would
more  clearly  address  integrity enforcement.  Clark [1987] offers a first cut at such a  set
of criteria, and further refines the initial  effort  [Clark 1989].

5.1.4.2 Analysis of Clark and Wilson

The second goal of computer integrity  was  defined  as maintaining the internal and
external consistency  of  data. The Clark and Wilson model addresses this goal  through
the use of IVPs and TPs. The purpose of an IVP is to confirm that all of the CDIs in the
system conform to the  integrity specification at the time the IVP is executed.   An
example of an IVP is the  accounting  principle  of  an  independent audit, in which the
books are balanced and reconciled to the external environment.  An IVP  verifies  not
only  internal consistency but also external  consistency  by  periodically cross-checking
internal data with the external reality  that it represents.



TPs maintain internal consistency by taking the  system from one valid  state  to
another  valid  state.   TPs  are structured so that a user cannot manipulate  data
arbitrarily, but only in constrained ways that  preserve  or  ensure the internal
consistency of the  data.   In  the  accounting example, a TP would correspond to a
double  entry  transaction.  Double entry bookkeeping ensures internal  data  consistency
by requiring that any modification of the books  be composed of two parts, which
account  for  or  balance  each other.  For example, if a check  is  to  be  written  (which
implies an entry in the  cash  account),  there  must  be  a matching entry on the accounts
payable account.

Separation of duty is another major part of  the  Clark and Wilson model that
addresses the third goal  of  computer integrity:  preventing authorized users from
making improper modifications.  This goal is achieved indirectly by separating all
operations into several subparts and requiring  that each  subpart  be  executed  by  a
different  person.   For example, the process of purchasing and paying for some  item
might involve subparts:   authorizing  the  purchase  order, recording the arrival of the
item, recording the arrival  of the invoice, and authorizing payment.  The last step
should not be executed unless the previous three are properly done. If each step is
performed by a  different  person,  improper modifications should be detected and
reported unless some of these people conspire.  If one person  can  execute  all  of these
steps, then a simple form  of  fraud  is  possible  in which an order is placed and payment
made  to  a  fictitious company without any actual delivery of items.  In this case, the
books appear to balance; the error is in the  correspondence between real and recorded
inventory.

The separation of duty method is  effective  except  in the case of collusion among
employees.  While this  vulnerability might seem risky, the method has proved  very
effective in practical control of fraud.  Separation of duty  can be made very powerful by
thoughtful application of the technique, such as random selection of the  sets  of  people
to perform some operation, so that any  proposed  collusion  is only safe by chance.

One of the nine rules defining this  policy,  rule  E2, points out the major difference
between the Clark and Wilson model and the Bell and LaPadula model.  Whereas the
lattice model of Bell and LaPadula defines access  restrictions  for subjects to objects, the
Clark and Wilson  model  (like  the Lipner implementation) partitions objects into
programs and data, and rule E2 requires subject/program/data access triples.  Access
triples  are  used  to  address  the first integrity goal and  also to implement  the
separation of duties concept.

An access triple (or triple) is a relation of the form: (UserID, TPi, (CDIa, CDIb, CDIc,
...)).   The  system  maintains a list of triples to control which persons can execute which
programs on specified CDIs.  Chen [1989] suggests that it is possible  to  combine  a
``user-to-program''  binding (which is already required in  [DOD  1985])  with  a  ``pro-
gram-to-data'' binding to enforce the triple.  According  to Chen [1989], several systems



are  capable  of  accommodating these bindings.  In addition to  the  type  manager/
pipeline approach taken by Boebert [1985] and the category approaches suggested by
Shockley [1988] and Lee  [1988],  the  Resource Access Control Facility (RACF) and the
Access Control Facility 2 (ACF2) also appear capable of supporting  user/program and
program/data bindings.

Initial examination of Chen's implementation of  access triples indicates that it would
fail.   Consider  a  system with two users (S1, S2), two transformation procedures (TP1,
TP2), and three constrained data items (CDI1,  CDI2,  CDI3). The system  security  officer
decides  that  the  following triples should be enforced:   (S1,TP1,CDI1),  (S1,TP2,CDI2),
(S2,TP1,CDI2), (S2,TP2,CDI3).  The following bindings  would be required in order to
implement these  triples  using  the approach suggested  in  [Chen  1989]:   (S1,TP1),
(S1,TP2), (S2,TP1),  (S2,TP2),  (TP1,CDI1),  (TP1,CDI2),   (TP2,CDI2), (TP2,CDI3).  The
(S1,TP1) binding required  to  satisfy  the first triple combined with the (TP1,CDI2)
binding  required to satisfy the third triple results in user S1 having access to data item
CDI2 through program TP1;  this  extra  triple, (S1,TP1,CDI2), is a violation of system
integrity.

There is evidence to suggest that implementing  triples directly on an actual system
may be prohibitively  expensive in terms of performance [Karger  1988],  or  that
requiring triples may reduce design and implementation flexibility  at the operating
system level [Chen 1989].  At the  same  time, triples do provide a means for limiting the
risk of  authorized users making  improper  modifications.   In  fact,  the Clark and
Wilson model effectively addresses all three goals of computer system integrity; the
question is  whether  this model can be implemented realistically.

5.1.5 BREWER AND NASH MODEL

5.1.5.1 Discussion of Brewer and Nash

The Brewer and Nash  model  [Brewer  1989]  presents  a basic mathematical theory
which is used to implement dynamically changing access permissions.  The model  is
described  in  terms  of  a  particular  commercial security policy,  known as the Chinese
Wall.  The model is  developed by first defining what is meant by a Chinese Wall,  and
then by devising a set of rules such that no person (subject) can ever  access data
(objects) on the wrong side of that wall. The   Chinese  Wall  security  policy  can  be
most  easily visualized  as the code of practice that must be followed by a   market
analyst  who  is  providing  corporate  business services.  Such an analyst cannot advise
corporations where he  has  ``insider knowledge'' about a  competitor,  but the analyst is
free  to  advise  corporations  which are not in competition  with  each other,  and also to
draw on  general market information.

The following basic elements are used to mathematically define the Brewer and Nash
model:

S: the set of subjects s; the users, or any program that might act on their be-
half;
O: the set of objects o; files in which items of information are stored;



X(o), Y(o):functions which determine respectively the x and y components
of the security label for  a given object o;
xj, yj:   X(oj) and Y(oj) respectively;
N: a boolean matrix with elements N(v,c)  corresponding to the members
of SxO; the  elements N(v,c) take the value true if subject sv has, or has
had, access to object oc or the  value false if sv has not had access to object
oc;

In the Brewer and Nash model, all corporate  information  is stored in a
hierarchically  arranged  filing  system  where there are three levels of significance:

a At the lowest level, individual items  of  information, each  concerning  a
single  corporation,  are   called objects.

b) At the intermediate level, all  objects  which  concern the same corporation
are grouped together into  a  company dataset.

c) At the highest level, all company datasets whose corporations are in com-
petition are grouped together into  a conflict of interest class.

Associated with each object oj is the name  of  the  company dataset yj to which it
belongs and the name of the  conflict of interest class xj to which that company dataset
belongs.

The basis of the Chinese Wall policy is that people are only allowed access to
information which is not held to conflict with any other information  that  they  have
accessed previously.  In this approach, a subject is initially  given complete freedom to
access any object he  cares  to  choose. For example,  if  there  were  three  conflict  of
interest classes with the following member datasets (a, b, c) (d,  e, f) and (g, h, i),  a
subject  would  initially  be  allowed access to all datasets a through i.   If  the  subject
then accessed an object in dataset e,  the  subject  subsequently would be denied access to
datasets d and f, while still having access to datasets a through c and g through i.  If  the
subject next accessed an object in dataset  a,  the  subject would be denied access to
datasets b and c as well as d  and f, leaving datasets a, e, g, h, and i accessible.

Two rules, the simple security rule and the *-property, are devised so that no subject
can  access  objects  on  the wrong side of the Wall.  The simple security  rule  formally
defines that read access to any object or by any subject  su is granted if and only if for all
N(u,c) =  true  (i.e.,  su has had access to oc):

((yc = yr) or (xc <> xr))

In other words, read access is only granted if or is in  the same company dataset y as
an object already accessed by that subject (i.e., within the Wall)  or  if  or  belongs  to  an
entirely different conflict of interest  class  x.   Once  a subject has read an object, the only
other objects  readable by that subject lie  within  the  same  company  dataset  or within
a different conflict of interest class.  At  most,  a subject can have read access to one
company dataset in  each conflict of interest class.



The *-property is based on  the  concept  of  sanitized information defined by the
authors.  Sanitization takes  the form of disguising a corporation's information, in
particular, to prevent the discovery of  that  corporation's  identity.  If sanitization can be
accomplished to prevent  backward inference of origin, the sanitized information can
be generally  compared  with  similarly  sanitized  information relating to other
corporations.  Formally,  for  any  object os, ys = yo implies that os contains sanitized
information, and ys <> yo implies that os contains  unsanitized  information.

Thus, the *-property formally defines that write access to any object ob by any subject
su is permitted if and  only if N'(u,b) = true and there does not  exist  any  object  oa
(N'(u,a) = true) which can be read by su for which:

ya <> yb and ya <> yo

In other words, write access is only permitted if access  is permitted by the simple
security rule, and if no object  can be read which is in a different company dataset to  the
one for which write access is requested and contains unsanitized information.  Thus, the
flow of unsanitized  information  is confined to its own company dataset;  sanitized
information may however flow freely throughout the system.

5.1.5.2 Analysis of Brewer and Nash

This Brewer and Nash model was introduced in  the  context of commercial
confidentiality requirements.  We believe that a reinterpretation of this policy to address
integrity issues would be both productive and  straightforward.   This model could be
used in cases in which being able  to  access and make changes to two objects would
allow  a  subject  to manipulate the information in these two objects  to  fraudulent ends.

For example, suppose a consultant works for two competing companies, Ace and
Acme, which both store information on their designs in a centralized DoD database. If
the  consultant has knowledge of both company's products,  the  consultant could subtly
modify the design for Ace's  product  such that it had poor electromagnetic compatibility
with  Acme's product.  Even though it worked at other times, Ace's  product  would  fail
in  unexplained  ways  when  used  in  the integrated weapons system in which Acme's
product  also  was used.  Ace's product would function correctly  during  testing, but
would be perceived to be faulty  in  comparison  to Acme's product when actually put
into use.

There would be no evidence that this failure  had  been the result of an integrity
violation in the design database; it would likely be perceived that Ace  simply  had  done
an inadequate job in the design of their product, or just  that their product tended to fail
a lot in the field.  This  type of conflict of interest problem was the origin of  the  Chinese
Wall policy, although the original application  was  in the financial community.  The
Chinese Wall policy would prevent the consultant from accessing both companies'
information.  Thus, it addresses the third goal of integrity - preventing authorized users
from making improper modifications.



The Chinese Wall policy was presented by Brewer et  al. [1989] at the 1989 IEEE
Symposium on Security and Privacy as an example of a policy  which  it  was  felt  could
not  be addressed by the TCSEC requirements.  As such, it is productive to identify
whether proposed TCSEC  revisions  add  the functionality needed  to  implement  this
policy.   As  was pointed out by John McLean in discussion following  Brewer's
presentation, the policy can in fact  be  implemented  using categories if the user's
allowed category set  is  permitted to change dynamically, and if this ability is used  to
vary the category set as a result of user accesses in  accordance with the Chinese Wall
policy.

Thus, it appears that categories or a comparable access partitioning mechanism are
sufficient to implement the  Chinese Wall, if a mechanism is also  provided  to  change
the user's allowed category set in response  to  user  accesses. This feature is not
necessarily provided by  existing  TCSEC implementations, since the TCSEC neither
requires  nor  precludes  support  for  dynamically  changing  category  sets. Security
policies which prohibit changes in mandatory access permissions for active processes as
a result of a  Tranquillity Principle that requires subjects to be inactive in order for their
security labels to change, will  not  be  able  to support the Chinese Wall.

5.1.6 SUMMARY OF MODELS

Five models have been developed which suggest fundamentally different ways of
achieving computer  integrity.  Biba [1977] was the first model to address integrity  in  a
computer system, and  it  has  the  most  established  base  of research because it is based
on the Bell and LaPadula  model for confidentiality.  This model emphasizes the use of
hierarchical levels.  There are still no criteria for  determining integrity levels and
categories, so the Biba model  does not seem to be the  best  approach  for  integrity.
Goguen [1982] notes the advantages of domain separation and automaton-based state
transformations.  Capabilities would seem to be the most effective mechanism for
implementing this model; the question is whether capability systems can  be  modified
to control propagation, review,  and  revocation  of  access privileges. Sutherland [1986]
addresses the effect of covert channels on integrity.  The Sutherland  model  is  primarily
involved with representing the  goal  of  protection  rather than with a means of
enforcing it.  Clark and Wilson  [1987] introduce the concept of access control triples that
can  be used to effectively implement separation  of  duties.   This model was designed to
meet commercial data integrity  needs, but it can also be used in meeting integrity needs
of secure military systems.  Brewer  [1989]  presents  a  mathematical theory that
implements dynamically changing  access  permissions.

Each of the models described in this chapter  addresses one or more of the integrity
goals defined at the  beginning of the paper.  All of the approaches address the  first  and
most basic goal of computer system  integrity.   The  second goal is addressed by the
Clark and  Wilson  model,  and  the third goal is addressed by the  Clark  and  Wilson
and  the Brewer and Nash models.



5.2 5.2  INTEGRITY MODEL IMPLEMENTATIONS

In  this  paper,  implementations   suggest   realistic approaches to the theoretical
basics identified in different models.  While models describe what types of mechanisms
are  necessary  to  satisfy  an   integrity  policy,  implementations describe  how  specific
mechanisms  can be  used together  in  a  system  to  achieve   integrity  protection
required by a particular security policy.   Six methods have been  identified  as proposed
implementations of one or more of  the   fundamental  models   described  in  the
previous appendix:  Lipner,  Boebert  and  Kain,  Lee  and  Shockley, Karger,  Jueneman,
and  Gong.   Lee  and  Shockley  are two independently  developed  studies  that are
counted  as  one as  they  take  essentially  the same approach.  The Boebert and Kain
implementation is  the  only one we have been  made aware of that is being actively
pursued as a worked example.

5.2.1 LIPNER IMPLEMENTATION

5.2.1.1 Discussion of Lipner

Lipner [1982] examines two ways of implementing  integrity in  commercial  data
processing  systems.   The  first method uses the Bell and LaPadula security lattice model
by itself.  The second method combines the  Bell  and  LaPadula model with Biba's
integrity lattice model.

Lipner's approach requires looking at security requirements in a different way from
the prevalent  view  taken  in the national security community.  In particular, non-hierar-
chical categories are considered more useful than hierarchical levels.  While a company
will typically  have  organizational divisions (that correspond to categories), there will
almost never be a notion of individuals having  a  clearance (that corresponds to a
security level).  Almost all  employees work at the same level; they just  do  different
things within that level.  The key is to appropriately define a set of access classes, user
types, and file types.

In Lipner's use of the Bell and  LaPadula  model,  each subject and each object is
assigned  an  access  class.   An access class is composed of one hierarchical  classification
level (e.g., Top Secret, Secret, Confidential, Unclassified) and one or  more  non-
hierarchical,  descriptive  categories (e.g., NATO, Intelligence).  In forming a lattice
implementation to meet integrity requirements, the initial  step  is to define a set of
access classes appropriate to achieve the desired restrictions.

In  Lipner's  first  method,  two  levels   distinguish between system  managers  and
all  other  users,  and  four categories describe the types of work  that  are  performed.
Several user types and file  types  are  assigned  different levels and categories to
implement integrity.  Since  almost all subjects and objects  are  assigned  the  ``System-
Low'' level, categories are the most important part of the  access class.   By  appropriately
defining   and   assigning   the categories, programmers, users, and system
programmers  are each limited to their own sphere of activity.



In the second method, Biba's integrity model  is  added to the basic (security) lattice
implementation.  The  second method, like the first, assigns  levels  and  categories  to
subjects and to objects.  Its objective, however, is to prevent the contamination of high-
integrity information by  the infusion of lower-integrity  data  and  by  processing  with
lower-integrity programs.  Integrity levels are provided  to prevent  the  modification  of
system  programs;  integrity categories  are  used  to  separate  different  environments
(e.g., development and production).  This approach  is  used to simplify and  render
more  intuitive  a  lattice  policy application.  It also limits the possibility of  introducing
a ``Trojan horse.''

5.2.1.2  Analysis of Lipner

Lipner's implementation of the Bell  and  LaPadula  and Biba models is the first work
to suggest that non-hierarchical categories are more important for integrity than
hierarchical levels.  Categories are used  to  address  the  first goal of integrity.  Lipner
took a survey of AIS auditors and AIS security officers to find that, in  general,
commercial users do not write their own programs and commercial program developers
do not use the programs they write.  Thus,  users should not be ``above'' programmers,
and programmers  should not be ``above'' users; both types of users are at the  same
``level,'' but  should  be  completely  separated  from  one another.  Therefore, the
appropriate use  of  categories  is more important than the use of levels.

Lipner also appears to be the first person to  separate objects into data and programs.
This distinction is  important because it is the  first  step  toward  addressing  the third
integrity goal (Clark and Wilson [1987] expand on this concept).  Programs can be either
passive  (when  they  are being developed or edited) or active (when  they  are  being
invoked on behalf of a particular user),  while  data  items are always passive.  Programs
are the means by which a  user can manipulate data; thus, it is necessary to control
which programs a user can execute and which data objects a program can manipulate.

Lipner's emphasis on categories and his  separation  of programs and data are
positive steps forward.  However, this approach has several drawbacks:

a Controls are at the level of user types and file  types as opposed to being
at the  granularity  of  individual users and files; this is also  a  disadvan-
tage  of  the Bell and LaPadula and Biba models.  This drawback means
that  the  granularity  of  control  is  inadequate  to enforce access control
triples.

b) Lipner recognizes that data should be manipulated  only by certified (pro-
duction) programs, but his controls do not provide a way to control  what
data  a  particular program can manipulate;  there  is  no  program-to-data
binding explicitly called for.

c) Lipner's first method results  in  an  ``all-powerful'' system manager who
could  conceivably  manipulate  the system at will.  An all-powerful mem-
ber of  a  computer system is always a  risk  because  the  least-privilege
principle is not enforced in such a situation.

d) Lipner's second method is complex and will be difficult to administer.



The last item requires  some  explanation.   Assume  we have a  system  with  two
confidentiality  levels  (HiConf, LoConf) and two integrity levels (HiInteg, LoInteg);
assume that proper category assignments exist for the sake of simplifying this
explanation.  The following  combinations  are possible:

a User1:  HiConf, HiInteg
b) User2:  HiConf, LoInteg
c) User3:  LoConf, HiInteg
d) User4:  LoConf, LoInteg

The Bell and LaPadula and Biba models use the operating system-oriented concepts of
read and write. These can  also  be generalized to communications-oriented concepts  of
receive and send respectively.   Bell  and  LaPadula  requires  that there be ``no read up''
and ``no write down''  in  confidentiality level; Biba requires that there be ``no  write  up''
and ``no read down'' in integrity level.   Thus,  User1  may read (LoConf, HiInteg) and
(HiConf,  HiInteg)  objects  and write (HiConf, LoInteg) and (HiConf, HiInteg) objects.
User2 may  read  any  object  and  write  only  (HiConf,  LoInteg) objects. User3 may
read-only (LoConf, HiInteg)  objects  and may write any object. User4 may read (LoConf,
LoInteg)  and (LoConf, HiInteg) objects and write  (LoConf,  LoInteg)  and (HiConf,
LoInteg) objects.

Notice that User1 would be allowed to read  any  object if there were no integrity
levels,  but  that  the  HiInteg level prevents him from reading half of  the  object  types.
Similarly, User 4 would be allowed to  read  any  object  if there were no confidentiality
levels, but the  LoConf  level prevents him from reading half of  the  object  types.   The
point is that confidentiality and integrity levels  have  an effect on one another;
understanding  this  interaction  and appropriately assigning levels to both users and
objects  is complex and will be difficult to administer.

5.2.2 BOEBERT AND KAIN IMPLEMENTATION

5.2.2.1 Discussion of Boebert and Kain

Boebert and Kain [Boebert 1985, Boebert 1988] introduce an implementation of the
Goguen and Meseguer model using the concept of assured pipelines in the LOCK
(LOgical  Coprocessor Kernel) machine-formerly known as the Secure Ada  Target
(SAT). Assured pipelines provide a  mechanism  for  ensuring that data of particular
types can only be  handled  by  specific trusted software.  An assured pipeline is a
subsystem that satisfies three properties:  1) it cannot be  bypassed, 2) its actions cannot
be undone, and 3) its actions must  be correct.

The LOCK  reference  monitor  system,  SIDEARM,  checks every individual access
attempt  for  consistency  with  the security policy being enforced.  The  reference
monitor  is implemented in hardware, and resides between the  processor, which
generates memory access requests, and the memory  system, which satisfies these
requests.   The  LOCK  reference monitor is actually a combination  of  a  memory
management unit (MMU), which has conventional rights checking facilities (read, write,



etc.),  and  a  tagged  object  processor (TOP), a new module responsible for the system's
protection state.  In particular, the  TOP  sets  up  the  tables  that define the access  rights
checked  by  the  MMU.  The  link between the two of them is the MMU  tables  and  the
highly privileged code that sets the tables based on  outputs  from the SIDEARM
[Boebert 1990].

Security attributes are associated with  both  subjects and objects, and the TOP must
make  appropriate  comparisons between these security attributes to establish proper
access rights in the MMU.  Three security attributes are associated with subjects  and
three  attributes  are  associated  with objects.  First, both subjects  and  objects  have
security (confidentiality) levels.  Each subject performs  its  function for some ``user,''
whose identity is the second subject security attribute.  The corresponding object's
second security attribute is its access control list (ACL), which lists those users who are
allowed access to the object's contents, along with the maximum access rights  that  each
designated user is permitted.  The third subject security attribute  is the ``domain'' of its
execution, which is an encoding of the subsystem of which the program is  currently  a
part.   The corresponding  object's  third  security  attribute  is  the ``type'' of the object,
which is an encoding of  the  format of the information contained within the object.

The process of determining  the  access  rights  to  be accorded a particular subject for
access  to  a  particular object uses all three security attributes.  To  enforce  the
mandatory access policy, the  TOP  first  compares  security levels of the subject and of
the  object,  and  computes  an initial set of access  rights  according  to  the  algorithm
defined in Section 4.1.1.4 of the TCSEC.

To enforce the discretionary  access  policy,  the  TOP then checks the ACL for  the
object;  the  ACL  entry  that matches the user portion of the subject's  context  is
compared against the initial set of access rights from the mandatory policy computation.
Any access right in the  initial set which does not appear in the ACL  is  deleted  from
the initial set.  The result of this second determination  check is an intermediate set of
access rights.

The third LOCK access rights determination  check  compares the subject's domain
against the object's type.   Each domain is itself an object, and one of its attributes  is  a
list of the object types accessible from the domain and  the maximum access rights
permitted  from  the  domain  to  each type.  Conceptually, the aggregation of these
domain definition lists constitutes a table, which is called  the  Domain Definition Table
(DDT).  To make the domain-type check,  the TOP consults the DDT row for the
executing domain, finds the column for the object's type,  and  compares  the  resultant
entry against the intermediate set of  access  rights.   Any right in the intermediate set
which does not appear  in  the DDT entry is dropped, and the result is  the  final  set  of
access rights, which is transmitted to the MMU.



Domain changing may occur as a side effect of a  procedure call.  If the called
procedure is not executable within the caller's domain, either the call is illegal or a
domain change is necessary to complete the call.  Information  concerning domain
changes is  stored  in  a  Domain  Transition Table (DTT), which is stored as a set  of  lists
associated with the calling domain.  The LOCK system creates  new  subjects to handle
domain changes, as required.   When  a  call requires a domain change, LOCK suspends
the calling  subject and activates the called subject.  The called subject has  a different
execution context, name space, and access  rights, all of which will prevail for the
duration  of  the  procedure's execution.

5.2.2.2  Analysis of Boebert and Kain

Boebert and Kain's implementation is an object-oriented approach that addresses  the
first  goal  of  integrity  by focusing more on isolating the  action  than  isolating  the user.
In other words, domains  restrict  actions  to  being performed in only one place in only
one way;  if  you  don't have access to that domain, you can't perform  that  action. This
approach should help in preventing users  from  gaining unauthorized access through
non-obvious paths.

This implementation is based on the Goguen and Meseguer model.  The possible
states are defined by the DDTs, and the state transitions are defined by the DTTs.  Thus,
integrity is achieved by  carefully  controlling  these  tables;  this appears to be an
achievable goal, although storage and  management of the large number of tables may
be  complex.   The Boebert   and   Kain   approach   is    the    only    model
``implementation'' that is actually being implemented  on  a real system (LOCK).  Their
reported experience  to  date  has shown that  least privilege can be achieved without
affecting system speed.  The  LOCK  team is currently developing tools to aid in  DDT
construction  and assurance [Boebert 1990].

Boebert and Kain's implementation provides a great deal of flexibility.  In order to
perform a certain action (e.g., modify an account balance), the user must have access to
the appropriate domain.  The domain may  then  further  restrict what specific programs
and data files the  user  can  access (e.g., record a deposit  for  any  account  other  than
the user's, and only delete from the user's account).   However, this flexibility may make
the system more difficult to  manage; some of the features  may  have  to  be  restricted
to ensure that unintentional errors are not made which  jeopardize integrity (e.g., the
user  may  be  added  to  another account group that allows him to record deposits to his
own account).



5.2.3 LEE AND SHOCKLEY IMPLEMENTATIONS

5.2.3.1 Discussion of Lee and Shockley

Independently, Lee [1988] and Shockley [1988] developed implementations of the
Clark and  Wilson  model  using  Biba integrity categories and (partially) trusted
subjects.  Both implementations are based on a set  of  sensitivity  labels. This set is built
from two  essentially  independent  components:  every label represents a sensitivity
with respect to disclosure, and an independent component representing a sensitivity
with respect to modification.   The  labels  corresponding to disclosure restrictions are
not discussed; here, only the integrity labels are discussed in detail.

Using Lee's notation, a trusted  subject,  S,  has  two integrity labels, view-minimum
and  alter-maximum,  denoted v-min(S) and  a-max(S).   Every  object  has  one  integrity
label, label(O).  An integrity label  is  simply  a  set  of integrity categories; the notion of a
hierarchical integrity level is not useful in this context.  An integrity  category can be
interpreted as the name of a particular type of  protected data.  A subject, S, may write
into  an  object,  O, only if label(O) is a subset of a-max(S); S may read O  only if either v-
min(S) or a-max(S) is a subset of label(O).  Any subject S with v-min(S) = a-max(S) is an
untrusted subject.

Data is manipulated by ``certified  transactions''  (TP in Clark and Wilson), which are
partially trusted  subjects. A partially trusted subject is  allowed  to  transform  data from
a limited set of input types to a limited set of output types:  it can read data that is
marked with at least one of the categories specified in the subject's view-minimum label
and still be allowed to write into data containers with  any or all of the types in its alter-
maximum label.

5.2.3.2 Analysis of Lee and Shockley

In addition to the two integrity labels,  v-min(S)  and a-max(S), every subject, S, also
has two disclosure  labels, v-max(S) and a-min(S).  Each object has a  disclosure  label
and an integrity label, which are made up  of  one  or  more disclosure  and  integrity
categories  respectively.    Two requirements must be met  for  a  subject  to  write  to  an
object.  First, the object's disclosure label must  dominate a-min(S)-no write down with
respect to disclosure.   Second, a-max(S) must dominate the object's integrity label-no
write up in integrity.  The subject similarly may not read  up  in disclosure-v-max(S)
must dominate  the  object's  disclosure label-or read down in integrity-the object's
integrity label must dominate  v-min(S).   These  views  address  the  first integrity goal.

The    views    provide    subject-to-program,     subject-to-object, and  program-to-
object  bindings,  which  is sufficient to control which program a subject can invoke  to
manipulate a particular object.  However, views  in  general bind  only  classes-or  types-
of  subjects,  programs,   and objects, whereas the primary access control mechanism of
the Clark and Wilson model  (triples)  binds  individual  users, programs, and objects.



(footnote #2) Thus, while Lee and Shockley  demonstrate a transformation of the Clark
and Wilson model  to  a lattice-based implementation, the  actual  operation  of  the such
an implementation would likely prove to be  cumbersome. Shockley also states that
additions need to be designed  and coded for building and checking tables of  user/
program/data triples.

[1] It should be noted that the Shockley implementation does provide  features  for
control  based  on   individual, identified programs.

The major difficulty with the Lee and  Shockley  implementations seems  to  be
management  of  large  numbers  of categories identified by Karger [1988]. Shockley
notes  that the Gemini Secure Operating System (GEMSOS) TCB has 90  bits available to
represent access restrictions.  The interpretation of these bits is confined to a single
internal  module that is easily modified.  Although GEMSOS can encode a large number
of categories (data types), managing these categories (storing all of the different
combinations  and  performing the dominance checks) was not discussed and would
seem to be a potential bottleneck.

The Lee and  Shockley  implementations  do  make  three important contributions.
First, categories  can  be  interpreted as data types; thus, strong typing is  important  for
implementing  integrity.   Second,  a   transaction-oriented approach seems best; thus,
database  technology  should  be very relevant.  Finally, non-hierarchical  categories
alone are sufficient to implement  the  desired  non-discretionary component of a Clark/
Wilson policy; thus, Biba's  hierarchical levels are unnecessary.   In  this  case,  an
important question to ask is, will Bell  and  LaPadula's  hierarchical lattice fit with this
non-hierarchical category  approach?  It  is  our conclusion that it will-the hierarchical
disclosure part should be able to be  added to the non-hierarchical categories as an
additional restriction on access.  In other words, assuming all of the  sensitivity label
requirements were satisfied, a hierarchical disclosure level  would  just be one more
restriction  on accessing an object.

5.2.4 KARGER IMPLEMENTATION

5.2.4.1 Discussion of Karger

Karger [1988] proposes an implementation of  the  Clark and Wilson model which
combines SCAP, his secure  capability architecture [Karger 1984], with the lattice
security model. In this scheme, a capability-based  protection  kernel  supports ACLs
(representing the security lattice) at the  outer level.  In a typical capability system, the
processor  automatically loads capabilities into a cache for  quick  reference.  Karger's
proposal is to cause a fault or trap to  the most privileged software domain (i.e., the



security  kernel) so that this privileged domain can evaluate whether the lattice model
permits the capability to be used.  Once a  capability has been evaluated, it is placed in
the cache so that it does not have to be reevaluated.  If a lattice  entry  is changed,
revocation can be achieved by flushing all  of  the capabilities for that object from  the
cache  (causing  new requests for the object to be freshly evaluated).

Karger suggests building  CDIs  out  of  abstract  data types, with TPs as  the
operations  of  the  type  manager. Sealed (encrypted) SCAP capabilities can be used  to
implement abstract type management.  As described above, SCAP can also intercept
attempts to exercise capabilities by the  TPs and require that special access control list
checks be  made to enforce separation of duty.  Such an access control  list for a TP would
contain the Clark and Wilson triples.

 As part of this implementation,  audit  trails  form  a much more active part of
security enforcement than in previous systems.  Karger introduces  ``token  capabilities''
to make the use of audit information easier.  While taking  the form of  capabilities  to
prevent  unauthorized  tampering, token capabilities are in fact separate copies of
individual audit records.  They include both the name of  the  transaction and the name
of the user who executed the  transaction. The user's name must be recorded so that one
can ensure that TP1 and TP2 are executed by different people.  The  name  of the TP is
recorded to  prevent  the  token  capability  from being used more than once.  Once used,
the token  capability is marked to prevent further use.

Token capabilities are used in conjunction with  access control lists to ensure that
permission to  execute  certain transactions or to modify certain CDIs can only  be
granted if certain previous transactions have been executed by  specific individuals.
Attempts to exercise  regular  capabilities cause an object's audit records (token
capabilities) to be examined and compared with the appropriate ACL entry.  If the
request is determined to be legal, the regular  capability is accepted and the desired
action  can  be  performed. Token capabilities simply provide a mechanism for making
the proper audit records available for  integrity  policy  decisions on a timely basis.

Entries in a separation of duty ACL  are  more  complex than the simple ACLs
supported in  previous  systems.   Each entry consists of a boolean expression in  which
the  first term is the name of the user who  proposes  to  execute  the action, and the
other  terms  are  token  capabilities  for required predecessor transactions.  The  boolean
expression identifies the name and order of the preceding  transactions that must be
executed.  As a final note, the  author  states that mechanism complexity and  system
performance  will  be problems regardless  of  the  protection  strategy  that  is adopted.



5.2.4.2 Analysis of Karger

By combining capabilities  and  access  control  lists, Karger greatly increases the
implementation flexibility  for achieving integrity.  Karger requires that the ACLs
contain the Clark and Wilson triples.  This  requirement  by  itself provides enough
functionality  for  a  system  designer  to implement static separation of duties
(addressing  both  the first and third goals of integrity).  Karger  does  not  say how he
would implement the triples or whether  current  systems would be sufficient; this is an
important  issue  that must be addressed in future work.

The other part of Karger's implementation is the use of capabilities in support of the
ACLs.  Capabilities are  used to provide domain separation so that actions are limited  to
particular domains, and also for quicker access.  When a new capability is presented for
invoking a certain program on  a particular object, a trap to the security kernel is made
to check the appropriate ACL entry.  If the request  is  legal, the capability is stored  in  a
cache  to  make  subsequent accesses much faster.

Karger's complex ACLs not  only  contain  triples,  but they also specify the order in
which  transactions  must  be executed.  These enhanced ACLs are used  along  with
audit-based token capabilities to enforce  dynamic  separation  of duties.  Token
capabilities can  also  be  used  to  enforce well-formed transactions.  The history of
actions  contained in these capabilities can be  used  to  implement  two-phase commit
protocols.  The two-phase  commit  protocol  requires log records of all actions to ensure
that  any  transaction either completely succeeds or does not occur at all.   These log
records are exactly the same records needed  for  making security policy decisions.

Notice that this implementation allows three levels  of protection.  First, triples
implemented in  the  ACLs  allow for basic integrity (static separation of duties).
Second, capabilities can be used to support these  ACLs  to  provide faster access and
domain separation.  Finally, enhanced ACLs and token capabilities support both
dynamic  separation  of duties and well-formed transactions.

The additional flexibility provided by this implementation also creates some
problems.   Enhanced  ACLs  are  much more complex than the ACLs implemented on
current  systems; thus, they may be more difficult to develop and to maintain. Token
capabilities will add overhead that may become  overly burdensome on system
performance. Also, adding new  applications may have a significant effect on  existing
separation of duty ACLs. Most importantly,  future  research  needs  to develop an
efficient  way  of  implementing  access  control triples.

5.2.5  JUENEMAN IMPLEMENTATION

5.2.5.1 Discussion of Jueneman

Jueneman [1989] proposes a defensive  detection  scheme that is based on mandatory
and discretionary integrity  controls, encryption, checksums, and digital signatures.
This approach is intended for use on dynamic networks  of  interconnected Trusted
Computing Bases  (TCBs)  that  communicate over arbitrary non-secure media.
Mandatory  Integrity  Controls prevent illegal  modifications  within  the  TCB,  and



detect modifications outside the TCB.  Discretionary  Integrity Controls are useful in
supplementing the mandatory controls to prevent the modification, destruction, or
renaming of an object by a user who has the necessary mandatory  permissions, but is
not authorized by the owner of the  object. Encryption is used by the originator of an
object to protect the secrecy or privacy of  information.   Checksums  provide
immutability and signatures provide attribution to allow the recipient of an object to
determine its believability.   The originator of an object should be responsible  for
assuring its confidentiality.  The recipient  should  be  responsible for determining its
integrity.

It is assumed that the TCBs provide the  equivalent  of at least a B2 level of trust in
accordance with  the  TCSEC. The B2 level provides  mandatory  and  discretionary
access controls and labels, process isolation achieved through  the provision of distinct
memory spaces under the control of the TCB, and the use of memory segmentation and
read/write  protection.  In addition, in order to support  the  concept  of separation of
duty, the ability to  exclude  individuals  or groups of individuals from accessing
specified  objects  is assumed-a B3/A1 feature.  Embedded cryptographic functionality is
also assumed.

This implementation enforces mandatory and  discretionary integrity controls across
a computer network through the use of integrity labels.   Two  concepts  are  basic  to  an
integrity label:  integrity domain  and  integrity  marking. Jueneman defines an integrity
domain as the set of allowable inputs to a program (process) together  with  syntactic
and semantic rules used to validate or reject those  inputs  and optionally produce one or
more outputs.   This  use  of  the term ``domain'' is different from  the  definition  used  in
both the TCSEC and  the  Boebert  and  Kain  implementation, i.e., the set of objects that
a subject has the  ability  to access.

An integrity marking has  both  hierarchical  and  non-hierarchical components.  A
hierarchical integrity level  is an estimated probability that the process which  created  an
object did so in accordance with the rules of  a  particular integrity domain or domains.
Combining two or  more  integrity domains, the probabilities are assumed to  be
independent and are multiplied together to  get  an  overall  level (probability).  A non-
hierarchical integrity category qualifies the hierarchical integrity level;  it  is  a
shorthand representation of identifying the  rules  of  the  integrity domain that applied
to that subject or object.

Integrity labels are incorporated as header and trailer labels within encrypted  subject
information  or  encrypted objects themselves.  Subjects, data files, and programs each
have different integrity labels.   The  particular  elements included in these label types
are discussed below.



5.2.5.1.1  Subject Integrity Label

A subject's integrity label  contains  a  readclass,  a writeclass, and a digital signature.
A  readclass  is  the range from the minimum integrity-read-limit to  the  maximum
security-read-limit; a writeclass is the range from the minimum security-write-limit to
the  maximum  integrity-write-limit.  The read and write limits are made up  of  integrity
markings.

A digital signature is a means by  which  a  particular user or TCB digitally ``signs''
for the validity of  objects it modifies.  It provides non-repudiation protection of both the
authorship of an object and the object's contents.  Once a user has modified an object, he
can  digitally  sign  the object to unambiguously indicate his willing  and  conscious
approval of the results.  A receiver may require the  originator's digital signature before
an  object  will  be  processed.

5.2.5.1.2  Data File Integrity Label

The integrity label for a data file contains an  integrity marking, a cryptographic
checksum of  the  entire  contents of the file, the name and  cryptonym  (digital
signature) of the originator, and a bottom-up system of digitally signed certificates.  A
checksum is a separable code that is added to a block of data  to  help  detect  errors
[Johnson 1989].

When original data is created,  an  extra  piece  of information, called the checksum, is
appended to  the  block of data.  The checksum is then regenerated when the data  is
received at its destination; the  regenerated  checksum  and the original checksum are
compared to determine if an  error has occurred in  the  data,  the  checksum  generation,
the checksum regeneration, or the checksum comparison.   Once  a checksum has been
computed, the original data and the check-sum are encrypted to produce a
cryptographic checksum.

The digitally signed certificates are actually individual audit records.  Each audit
record  has  a  ``pedigree'' part and a (optional)  ``provenance''  part.   The  pedigree
records which users ran what  processes  against  what  data inputs in order to produce
given output(s); it is  digitally signed by a TCB to show the TCB's approval.  The
provenance contains ancillary  information  (documentation,  specifications, test cases
and results, etc.); it is digitally signed by a user to show the user's intent.

5.2.5.1.3 Program Integrity Label

A program's integrity label contains all  of  the  elements listed for a data file, and
also  includes  the  program's integrity domain.



5.2.5.2 Analysis of Jueneman

Jueneman makes a very good point when he says that ``it is almost  impossible  to
discover  or  stop  all  [illegal actions] by  [malicious]  programs''  (e.g.,  virus,  Trojan
horse, unintentional errors in any systems  or  applications program).  Therefore, his
approach is  to  use  a  defensive containment mechanism that can at least detect any
change to a subject or object, and that cannot itself be subverted, in order to prevent such
programs from affecting  the  rest  of the system.  This approach itself seems to be a very
appropriate type of design philosophy for  integrity:   detection instead of prevention.

Jueneman chooses to implement  this  design  philosophy with some mechanisms
that appear impractical, and some mechanisms that appear quite effective.  His use of
hierarchical probabilities   and   qualifying,   non-hierarchical   rules (categories) for
achieving  TCB  integrity  is  complex  and would be difficult to implement.  It would be
difficult  to assign a consistent numerical value as  to  whether  certain rules were
followed (other than  0  or  1),  and  developing appropriate rules would be slow and
application specific  at best.  Thus, it would seem more reasonable  to  use  another
implementation for TCB integrity.

    However, Jueneman's use of encryption,  checksums,  and digital signatures seems
to be  an  excellent  proposal  for addressing the first integrity goal at the distributed
system level.  Significant work has already been done in  these three areas.  Encryption,
checksums, and digital  signatures are well understood, and they add necessary
integrity protection   for   distributed   systems.   To  re-emphasize Jueneman's
approach:  the  originator  of  an   object  is responsible  for  assuring  its   confidentiality,
and  the recipient is responsible for determining its integrity.

5.2.6 GONG IMPLEMENTATION

5.2.6.1 Discussion of Gong

Gong [1989] presents the design  of  an  Identity-based CAPability protection system
(ICAP), which  is  aimed  at  a distributed system in a network  environment.   ICAP
merges the ACL approach and the capability approach; ACLs support a capability
protection  mechanism  (just  the  opposite   of Karger's SCAP), and nicely solve the
problem of  revocation. Gong's design provides support for administrative activities
such as traceability.  This approach also works for  a  centralized system.  Compared
with existing  capability  system designs, ICAP requires much less storage and has the
potential of lower cost and better real-time performance.

A classic capability is represented as
                            (Object,Rights,Random)

in which the first item is the name of the  object  and  the second is the set of access rights.
The third is  a  random number to prevent forgery and is usually  the  result  of  a one-
way function f,



                           Random = f(Object,Rights)

Here, f can be a publicly known algorithm.  It should not be based on other secret keys
because key  distribution  introduces other difficulties.  Its requirements are that  it  is
computationally infeasible to inverse f and, given a pair of input and matching output, it
is infeasible to find a second input which gets the same output.  When  an  access
request arrives at the object server together with a capability, the one-way function f is
run to check the  result  against  the random number to detect tampering.   If  the
capability  is valid, the access is granted to the subject.

In a classic system, a capability is created  for  each different set of access rights
required for each object, and the capabilities that are kept by the server and other
subjects for the same set of rights are the same.  For example, if subject S1 possesses a
read-only right and S2 possesses a read and write right for an object, the server has  to
have two different capabilities, C1 and C2.  S1 holds C1  and  S2 holds C2.

In ICAP, only one capability for each object is  stored at the server, and different
subjects' capabilities for  the same object are distinct.  This improvement  in  storage  is
achieved by changing the semantics of those items in  traditional capabilities to
incorporate  identities,  e.g.,  the owner-id, into the capabilities.  When the server creates
a new object on behalf of a subject S1, an ``internal''  capability is created as

                           (Object,Random0)

and stored in the server's internal table.  As  usual,  this table is protected against
tampering  and  leakage.   S1  is sent an ``external'' capability

                          (Object,Rights,Random1)

which looks exactly the same as a classic capability but
                         Random1 = f(S1,Object,Rights,Random0)

When S1 presents the capability later, the server  runs  the one-way function f to check its
validity.  Note  the  number Random0 should possess a kind  of  freshness  to  counter  a
playback attack.  For example, it could have a timestamp.

The server holds only one internal capability for  each object, regardless  of  how
many  different  subjects  have access to a particular object.  Thus, there is  a  reduction in
the amount of storage required at the  server.   Subjects continue to hold distinct  external
capabilities  for  each object they are allowed to access.

When S1 wants to pass its external capability
                       (Object,Rights,Random1)

to a process owned by S2, it  must  explicitly  present  the request to the server.  If the
request  complies  with  the security policy, the server  retrieves  the  secret  Random0
from its internal table, creates

                     (Object,Rights,Random2)

where



                     Random2 = f(S2,Object,Rights,Random0) and passes it to S2.

Because the internal  random  number  is  kept  secret, external capabilities are
protected against forgery.   Moreover, since proper authentication is done,  subjects
cannot masquerade as others.  Subject S2 cannot use S1's capability even if S2 possesses a
copy of S1's capability  because  the identities are different, hence the results  of
applying  f will be different; S2 must be given its  own  capability  to access a particular
object.  Any valid propagation has to be completed by the server rather than  by  the
subjects.   In other words, the server can monitor, mediate, and record any capability
propagation.

When a capability is to be propagated, the kernel or an ``access control server'', which
may  or  may  not  be  the object server, checks to see whether to allow  the  propagation,
according  to  the  security  policy.   The  intuitive motive of this scheme is the
observation that the number  of capability propagations is usually much less than the
number of their uses, so it seems more economic to check the  security policy at
propagation time than at  access  time.   The object server does not check  against  the
security  policy when a capability is later used for access.  Instead, exception lists and
propagation trees are used to revoke access.

Exception lists are associated with each internal capability to achieve rapid
revocation.  When S1 wants to revoke a capability it gave S2 earlier, it presents the
request  to the server.   The  server  then  updates  the  corresponding exception list.
When an access is required, both the exception list and the capability's validity are
checked.   These checks can be done in parallel.

Capability propagation trees are stored at  the  access control server, and they can be
resolved in background  mode to achieve complete revocation.   For  a  capability  passed
from S1 to S2 and then to S3,  the  propagation  tree  entry would look like

                         (Object,Rights,S1,S2,S3,Random3)

where
                        Random3 = f(S1,S2,S3,Object,Rights,Random0)

When something goes wrong, it  is  straightforward  to  know from the access control
lists who  has  what  access  to  an object.  In addition, it is easy to know from  the
propagation trees how the access rights were propagated.



5.2.6.2 Analysis of Gong

Gong's implementation  is  an  effective,  conceptually straight-forward
implementation of access control lists supporting a capability-based protection system.
His  approach takes advantage of the  domain  separation  and  performance
characteristics of capabilities, while  maintaining  control over propagation and
revocation of access rights.   Just  as importantly, the structure of the implementation  is
simple and allows the incorporation of any disclosure and/or integrity policy.  This
implementation can be used to address the first and third goals of integrity.

The implementation is made up of users, objects, object server(s), and a centralized
access  control  server.   The access control  server  maintains  ACLs  that  describe  the
desired protection policy, and  it  also  monitors  any  new requests for capabilities.  An
object server  maintains  one internal capability for each object, and  communicates  with
the access control server on behalf of the users.  These two types of servers each  contain
additional  data  structures that Gong uses to solve the two main problems encountered
in the past with capability-based protection systems:  propagation and revocation.
Propagation trees are  stored  on  the access control server to keep  track  of  which  users
have access to an object and how they obtained that access.  Each object server stores an
exception list that records  when  a user wants to revoke access to another user.

This implementation  provides  flexibility  in  several areas.  The most significant
accomplishment is that the type of protection policy is immaterial to Gong's
implementation; it could be a Bell and LaPadula disclosure lattice,  a  Biba integrity
lattice, Clark and Wilson triples, or Lee/Shockley non-hierarchical categories.  Whatever
the  policy,  it  is incorporated as part of the access control server.

There are other aspects to Gong's  implementation  that allow for flexibility of use.
First,  domain  IDs  can  be incorporated into user IDs, if necessary.   Second,  discre-
tionary control can be added on top of the existing non-discretionary control  structure.
Third,  sealed  (encrypted) capabilities can be used to implement protected  subsystems.
Finally, the given capability structure can be expanded.

Gong's implementation  has  two  additional  advantages besides  flexibility.   First,
the  protection  policy   is checked at propagation time, which  is  more  economic  than
checking the policy on each access.  Second, although exception lists are very useful for
achieving  rapid  revocation, complete revocation can be performed in  the  background
by the access control server.  This structure also allows revocation to  be  withdrawn.
Since  revocation  is  initially marked in the exception list, a false alarm or error can  be
resolved without  invoking  the  expensive  full  revocation mechanism.

A disadvantage in the Gong implementation  is  that  it can only implement static
separation of duties  because  the ACLs are not checked at access time.  This limitation
may be a major drawback in the long run if  dynamic  separation  of duties becomes an
accepted and required part of system specifications.



5.2.7  SUMMARY OF MODEL IMPLEMENTATIONS

Based on one or more of the models we  have  discussed, seven implementations
have  been  identified  and analyzed. Lipner [1982] is the first work to emphasize the
importance of non-hierarchical  categories  for  achieving  integrity. This implementation
also introduces the  important  distinction between program objects and data objects.
Boebert [Boebert 1985, Boebert 1988] presents  a  flexible,  object-oriented approach that
focuses more  on  isolating  the  action than isolating the user.  Lee  [1988]  and  Shockley
[1988] introduce minimum and maximum views for  controlling  access to objects.  This
approach may be difficult to  manage,  but it does point out the usefulness of strong
typing and transaction-based operations. Karger [1988] and Gong [1989]  both combine
the advantages of  capabilities  (speed  and  domain separation) and  ACLs  (review  and
revocation).   Karger's approach uses capabilities in support  of  ACLs;  Gong  uses ACLs
in support of capabilities.  Karger provides more flexibility, but Gong's approach seems
to be more realistic  for use in an actual system. Jueneman [1989] has a  highly  complex
approach for TCB integrity, but his use of  encryption, checksums, and digital signatures
seems to be  an  excellent proposal for promoting and  preserving  certain  aspects  of
integrity in distributed systems.

Each of the implementations described in  this  section address one or more of the
integrity goals  defined  at  the beginning of the paper.  All of the approaches  address
the first, and most basic, goal of  computer  system  integrity. The second goal is not
addressed  directly  by  any  of  the implementations.  The third goal  is  addressed  by
several implementations [Lee 1988, Shockley 1988, Karger 1988,  Gong 1989] that
recommend using concepts described in  the  Clark and Wilson model.

5.3 GENERAL ANALYSIS OF MODELS AND MODEL IMPLE-
MENTATIONS

Models and model implementations that protect  information in computer systems
are all based on some policy variation of the principle of separation. A common  theme
is  to restrict access to information by separating  more  ``sensitive'' information from less
important data, and concentrating the protection effort on the sensitive information.
We have described several models and implementations which have different
philosophies on the concept of separation.  Now we look at the pros and cons of five
separation  philosophies: hierarchical  levels,  non-hierarchical  categories,  access control
triples, protected subsystems,  digital  signatures, and encryption.  We also discuss the
combination of capabilities and ACLs, and conclude with a general analysis.



5.3.1  Hierarchical Levels

One of the  earliest  computer  protection  models  was developed in 1975 by Bell and
LaPadula,  with  the  emphasis being to prevent unauthorized disclosure of data or
information.  Their approach to modelling separation was  through  a lattice, designed to
neatly coincide with the existing  governmental classification structure (e.g, Top Secret,
Secret, Confidential, Unclassified).  The Bell  and  LaPadula  model was the inspiration
for Biba's integrity model.  Both models emphasize levels in establishing rules for
information  protection.

The current governmental classification system is  oriented toward preventing
improper disclosure of  information; Bell  and  LaPadula  developed   their   model   with
this classification system in mind.  If a similar  classification system were developed for
preventing improper  modification, the Biba model would be a good choice for
representing these needs.  Until then, hierarchical levels  will  not  be  very useful for
computer system integrity.

5.3.2 Non-hierarchical categories

The term ``category'' is used to  describe  non-hierarchical separation.  In 1982, Lipner
expressed  the  need  to have a different outlook on computer  security.   He
recommended that primary emphasis be placed  on  categories,  and only minor
emphasis be placed on  levels.   Outside  of  the government, few organizations operate
according to the  concept of levels.  Most companies have employees at  the  same
``level'', but with  different  responsibilities.   Even  if levels are implemented, categories
must provide  appropriate separation between users within each level.  The concept  of
``roles'' may be more accurate or applicable.

5.3.3 Access Control Triples

Lipner was the first person to identify  the  need  for distinguishing between program
objects  and  data  objects. Clark and Wilson built on this distinction to establish  the
concept of access control triples.  Clark  and  Wilson  view triples  as  being  necessary
for  implementing   integrity because triples allow the explicit identification  of  which
data a user is allowed to manipulate with a particular  program. Triples also provide the
ability to implement  separation of duty, another necessary attribute of a computer
system that has integrity.

Triples provide  a  useful  paradigm  for  implementing integrity.  While the Clark
and Wilson model does  not  have all the details worked out, we believe that it is  a
useful guide for future  research  in  addressing  computer  system integrity.



5.3.4  Protected Subsystems

Goguen and Meseguer introduced an automaton-based model that focuses on the
transition from one valid state  to  the next as defined by  the  particular  security  policy
being enforced.  The emphasis of this model is to separate  users' working spaces to
provide non-interference  and  to  prevent unauthorized access.  Boebert and Kain's
implementation  is based on this concept of protected subsystems.

Protected subsystems implement a finer degree of  separation  within  categories.
They  exclude  certain  access rights that a user has outside the subsystem.   A  user  can
only access certain objects from within the  protected  subsystem, and then only in
constrained  ways  defined  by  the subsystem.

Strong typing is a promising area for implementing protected subsystems.  Strong
typing  provides  separation  by limiting the number of entry points  for  executing
certain programs.  In other words, a user must have  access  to  the appropriate type in
order to  execute  the  programs  within that domain.  However, strong typing does not
limit the execution of specific programs once  a  user  has  entered  the domain; that is the
responsibility of access controls (i.e., triples).

5.3.5 Digital Signatures/Encryption

The last philosophy of separation is based  on  digital signatures and encryption.
Jueneman  is  the  biggest  supporter of this approach; he  strongly  argues  that  digital
signatures and encryption are the only way to  provide  protection across a distributed
network.  Jueneman may be  correct in this matter, although the use of digital  signatures
and encryption appears to be a necessary rather than a  sufficient mechanism for
protection  in  distributed  environments.

5.3.6 Combination of Capabilities and ACLs

Both Karger and Gong combine the advantages of capabilities (protection domains
and performance) and ACLs (control over propagation and revocation of access rights)
to provide protection.  Karger's model allows for dynamic separation of duties, but
Gong's model is simple, implementable, and  more efficient for static separation of
duties.

5.3.7 Summary of General Analysis

Having analyzed each of  the  individual  models,  some overall conclusions can be
identified.   First,  as  Lipner suggested, categories seem to be much  more  important
than levels for implementing integrity.  Also, it is important to distinguish between
program and data  objects  because  programs are the means by which a user modifies
data  objects. Second, the Clark and Wilson model appears to  be  a  useful starting point
for addressing the issues of  integrity.   In particular, access triples are recommended (if
not required) to explicitly identify which programs a user may  invoke  to modify
particular data objects;  triples  cannot  be  implemented with existing systems.  Third,
encryption and digital signatures look to be an effective way of maintaining integrity



over a distributed network.  Fourth, the combination of capabilities and access control
lists provides maximum separation, efficiency, and access review.  Finally, many of the
models talk about validation and verification  of  the  programs that carry out the actual
manipulations (TPs in  Clark and Wilson).  Continued research needs to focus  on
methods for assuring that programs do what they are intended  to  do and nothing more.

6 CONCLUSIONS

This paper has discussed the need for integrity  to  be promoted and preserved with
respect to data and systems.  It has recognized that this need exists for  military,  public,
private, and commercial  organizations  who  depend  on  the integrity of their  systems
and  their  data  in  automated information processing, process control, and  embedded
computing applications.  Further, it has shown that  this  need has been recognized since
the early days of computer systems development, and that many of the protection
mechanisms  now routinely  incorporated  into  today's  computers  were  the result of
addressing concerns  of  integrity.   This  latter point is important in that often the
argument is  made  that we have had no worked examples of integrity and that we need
to conduct a significant amount of research before any  criteria are written.  This paper
tries to add some balance  to that argument.  The paper illustrates that there is  a  sig-
nificant body of knowledge  available  about  integrity  and integrity  mechanisms,  and
that  such  knowledge  can   be presented in a way to aid in initial  formulations  of
criteria.  The  paper  also  recognizes  that  there  are  many aspects of integrity that
require further investigation.  It is the idea of concurrently pursuing both criteria and
criteria-enabling research that we believe is key to making the rapid advances necessary
in meeting the recognized needs for integrity.

6.1 SUMMARY OF PAPER

The paper discussed the difficulty of trying to provide a single definition for the term
integrity as it applies  to data and systems.  We conclude that a single  definition  is
probably not possible and, indeed, not  needed.   An  operational definition that
encompasses  various  views  of  the issue seems more appropriate.  We offer such an
alternative so that progress beyond definitional aspects  can  be  made. Our framework,
or operational definition, provides  a  means to address both data and systems integrity
and  to  gain  an understanding of important principles that  underlie  integrity.   It
provides  a  context  for  examining   integrity preserving mechanisms and for
understanding  the  integrity elements that need to be included in system  security
policies.

The paper has provided a set  of  principles  that  are important to integrity.  We do
not claim  that  the  set  is complete or applies to all systems or applications.   We  do
believe that it is useful as basis for developing  integrity policies and mechanisms.  We
encourage others to debate  and to strengthen this set of principles.



We have shown that the promotion  and  preservation  of data and systems integrity
can involve a wide  diversity  of mechanisms.  The mechanisms have been  categorized
to  show that they serve a relatively small set of distinct purposes. Separation stands out
as the most pervasive feature.  We use the term ``policy'' to describe the  administrative
courses of actions which characterize a group of mechanisms in  promoting or
preserving integrity.  We acknowledge that not all of these mechanisms are automated,
but we  believe  that  by including them we have given greater insight into what types of
controls need to be provided and  the  types  of  threats which must be countered by
automated  integrity  mechanisms. A significant number of these mechanisms  serve  to
support human-enforced integrity; thus, without  humans  involve  in the process, these
mechanisms will not  necessarily  provide additional benefits. The  costs  and  benefits  of
research required to automate some  of  these  mechanisms  should  be evaluated.  All of
these mechanisms need to be  examined  in light of other protection goals, i.e.,
confidentiality,  to ensure  that  any  conflicting  goals  are  identified   and resolved prior
to the inclusion  of  these  mechanisms  into systems that need to satisfy multiple
protection goals.

The paper has provided an overview  of  several  models and model
implementations  (paper  studies)  of  integrity. These models are still rather primitive
with respect to  the range of coverage suggested by examining both data and  systems
integrity. No model, on its own, supports  all  of  the integrity policies that we have
identified. Of these models, the Clark and Wilson model now seems  to  be  receiving  the
most research attention.  It is not  a  formal  mathematical model, and its lack of
preciseness  in  its  details  still leaves many elements ambiguous.  Although these
ambiguities need to be resolved and many aspects empirically proven, the Clark and
Wilson model provides a fresh and useful point  of departure for examining issues of
integrity.  The Biba model addresses a more fundamental concept, that of contamination.
While this model may seem initially appealing, it seems contrary to what is actually
occurring in data processing where most of the mechanisms we apply are meant  to
increase  the integrity of the data.  Further, it  does  not  seem  to  be practical or easily
implementable, i.e.,  the  determination of labels for specific  data  and  the  subsequent
labelling operations of data items may be extremely difficult and of a much higher cost
than the value returned.   The  Goguen  and Meseguer model is related to integrity  by
the  concept  of non-interference, which can be used to  model  behaviors  of active
entities and to show that actions  are  separate  and non-interfering.

6.2  SIGNIFICANCE OF PAPER

By going beyond attempting  to  define  integrity,  the document provides material
that we believe will be useful to system designers, criteria developers,  and  to
individuals trying to gain a better understanding of the issues of  data and systems
integrity.  The study provides a  framework  and foundational material to continue the
efforts toward developing criteria for building products which preserve and promote



data and systems integrity.  However,  this study is only  a  beginning  and   remains
incomplete  in  terms  of fully addressing the topic.  Further  principles  should  be
sought out.  Additional  mechanisms  in the  areas of  fault tolerance,   database
management,  communications,  and  in specific   application   areas   should   be
described  and analyzed.

The paper reinforces the realization that data and systems integrity are important
and necessary,  and  that  they need to be addressed in a determined and methodical
manner. We conclude that there is a great deal known  about  certain aspects of data and
systems integrity and,  in  many  cases, that there exists a history of  experiences  with
both  the principles and the mechanisms.  We also conclude that  there are many things
yet to be learned with respect to assembling this experience and knowledge into
coherent  systems,  e.g., moving from manual mechanisms to automated mechanisms.
One of the main conclusions that can be drawn from this paper is that mechanisms can
be applied at various layers  of  system abstraction.  This concept of layering needs to be
examined to determine what, if any, interfaces need to exist  between mechanisms at
different system  layers  and  what  protocols need to exist within layers.  IDA is
undertaking a follow-on study to address the allocation and layering of mechanisms.

Integrity  criteria  need  to  be  written.   For  some aspects, we conclude that there is
sufficient  understanding to write specific criteria, but for other  aspects  of  such criteria,
more experience, research, debate, and  proofs  of concepts will be  needed.   We  believe
that  this  partial knowledge should not delay the writing of criteria.  Rather, we
recognize the need to establish a means to make the  criteria, and thus  the  systems,
evolvable  with  respect  to integrity protection.  Establishing this means  may  require
more participation by systems vendors  in  the  evolutionary development of integrity
criteria  than  there  was  in  the development of confidentiality criteria.  The key here is
to understand what is involved in designing systems for  evolution so that criteria do not
unnecessarily stifle new system designs or new concepts for preserving or  promoting
integrity.

6.3 FUTURE RESEARCH

The following studies  are  suggestive  of  those  that should be undertaken to extend
and  apply  the  principles, mechanisms, models, and model implementations that have
been presented in this paper.

Allocation Study

The understanding of layering and allocating the  various integrity mechanisms
needs to be broadened.   There  are many questions that need to be addressed  as  part  of
this understanding.  For example, how should the  various  mechanisms be allocated
across  the   applications,   operating   systems,  database management systems,
networking  systems, and hardware bases? What  is  the  basis  for  this  allocation?  What
are  the interactions  between  and  among  layers?    What  are  the concerns  between
allocation  and  system  evolution?  What might  one  expect  from  a vendor's product  as
a result of allocation?  This study is critical to  refining  specifications for product-
oriented control objectives that will form the basis of product criteria.



Interface and Protocol Studies

Where there  appears  to  be  a  need  for  interaction between mechanisms in different
system layers, the  specific interfaces and communications protocol must be  established.
These studies should examine current interfaces and  develop new ones as appropriate.
They should design new or show  how existing protocols can be used.  These studies
should  examine the efficiency and effectiveness of potential interfaces and protocols.
Where appropriate, these studies should recommend proofs of concept research.

Demonstration/Validation Studies

We need to have some worked examples to ensure that the arrangement of
mechanisms is workable,  that  interface  and protocol concepts are valid, and that
criteria are testable. These studies should incorporate a variety of systems architectures
to preclude development of criteria with  a  single or limited focus.

Criteria Development Study

We need to begin to develop criteria in  parallel  with the protocol  and
demonstration/validation  studies.   This effort should interact with these two areas in
receiving and providing direction.  One major part of the  criteria  study should be form,
a second part should be scope  and  specific content, a third part should address the
evolution  of  criteria, and a final part should address the linkages of product criteria to
certification and accreditation  of  systems by using authorities.
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APPENDIX : GENERAL INTEGRITY PRINCIPLES
Several general security concepts should be  borne  in  mind while considering the
mechanisms  described  in  Section  4. These concepts are based primarily  on  a  paper
by  Jerome Saltzer and Michael Schroeder which has formed the basis for many of the
ideas in later computer security work, including the TCSEC.  This appendix is intended
to help  give  a  perspective to the very diverse set of mechanisms  reviewed  in Section 4.

In their 1975 paper, ``The Protection of Information in Computer Systems,'' Saltzer
and Schroeder address  a  number of issues  related  to  computer  security  [Saltzer
1975]. While the focus of the paper was not exclusively  integrity, many of the ideas  and
concepts  presented  in  that  paper relate to  current  integrity  issues.  In  particular,  the
authors discuss ``Functional Levels of  Information  Protection'' and ``Design Principles,''
which will be reviewed  in this appendix.  In addition to being  applicable  to  integrity,
these principles relate directly to many  concepts  in the TCSEC.  This paper compiles
and draws on a large  amount of early material dealing with  computer  security.
References to those sources will not be noted here,  but  can  be found in the original
report.

1 TRADITIONAL DESIGN PRINCIPLES

The  design  principles  presented   by   Saltzer   and Schroeder are intended to reduce
design  and  implementation flaws which lead to unauthorized  disclosure,
modification, or denial of system resources. The  authors  emphasize  that these
principles should not be taken as absolute rules,  but that  violations  of  the  principles
should  be  taken  as potential sources of trouble and  therefore  should  not  be
undertaken lightly. These principles tend to reduce both the number and severity of
flaws.

1.1 ECONOMY OF MECHANISM

This principle states that the design, for all  aspects of the system  and  especially  for
protection  mechanisms, should be kept as simple and small as possible.  The  rationale
behind this principle is that techniques such  as  code verification are required to
discover design and implementation flaws which occur only  under  exceptional
conditions. Such techniques are effective only if the design  is  simple and the actual code
is minimized as much as possible.



1.2  FAIL-SAFE DEFAULTS

This principle asserts that access decisions should  be based on permission rather
than exclusion.  This equates  to the condition in which lack of access is  the  default,  and
the ``protection  scheme''  recognizes  permissible  actions rather than prohibited actions.
The  authors  mention  that decisions based on exclusion present the wrong
``psychological base'' for a secure system. Also, failures due to  flaws in exclusion-based
systems tend to grant (unauthorized) permission, whereas permission-based systems
tend to fail  safe with permission denied.

1.3 COMPLETE MEDIATION

This principle stresses that ``every access request  to every object must be checked for
authority.''  This requirement forces a global perspective for access control,  during all
functional phases (e.g. normal operation,  maintenance). Also stressed are reliable
identification of access  request sources and reliable maintenance of changes in
authority.

1.4 OPEN DESIGN

This principle stresses that secrecy of design  or  the reliance on the ignorance of
(malicious)  users  is  not  a sound basis for secure systems. Open design allows for  open
debate and inspection of the strengths, or origins of a lack of strength, of that particular
design.  Secrecy,  a  strong protection mechanism in itself, can be  implemented  through
the use of passwords and keys.  Secrecy implemented  through the use of these objects is
much  easier  to  maintain  than secrecy of design, where disclosure permanently effects
system security. By comparison, passwords and keys  are  easily changed if disclosed,
restoring security of the system.

1.5 SEPARATION OF PRIVILEGE

This principle asserts that protection mechanisms where two keys (held by different
parties) are required for access are stronger mechanisms than those requiring only  one
key. The rationale behind this  principle  is  that  ``no  single accident, deception, or
breach of trust is  sufficient''  to circumvent the mechanism.  In computer systems  the
separation is often implemented as a requirement for multiple conditions to be met
before access is allowed.

1.6 LEAST PRIVILEGE

This principle specifies that ``every program and  user of the system should operate
using the least set  of  privileges necessary to complete the job.''  One effect  of  this
principle is that the potential  for  damage  caused  by  an accident or an error is limited.
This  principle  addresses the need for minimal interactions  between  privileged
programs and the need to prevent improper uses of privilege. An example of the results
of not applying the  least  privilege principle was  seen  in  the  November,  1988  Internet
``Virus'' [Eichin 1989].  One of  the  ways  in  which  this virus gained access to its host
systems  was  by  exploiting the ability of the UNIX ``sendmail''  Simple  Mail  Transfer



Protocol (SMTP) server to execute  arbitrary  programs.  The ability to execute arbitrary
programs was not  necessary  to the operation of SMTP and, under the least privilege
principle, should not have been provided. Its unnecessary presence gave an extra
privilege, the execution of arbitrary programs on the remote host, to users of sendmail,
and  thus  allowed the ``virus'' to exploit this privilege to compile and  execute its initial
components on remote systems it  wished  to ``infect.''

1.7 LEAST COMMON MECHANISM

This principle requires the minimal sharing  of  mechanisms either common to
multiple users or ``depended upon  by all  users.''  Sharing  represents  possible
communications paths between subjects which can be used to circumvent security
policy.  Global mechanisms must be adequately secure in terms of the user with the
strictest  requirements  on  the system; this encourages non-global mechanisms.

1.8 PSYCHOLOGICAL ACCEPTABILITY

This principle encourages the routine and  correct  use of protection mechanisms by
making them easy  to  use,  thus giving users no reason to attempt to circumvent  them.
Also addressed is the need for the supplied mechanisms  to  match the user's own image
of his protection goals.  This requirement prevents the user from attempting to
implement his protection goals in an unnatural or arcane manner using  poorly fitting
mechanisms, since such an  approach  would  be  more prone to error.

2 ADDITIONAL DESIGN PRINCIPLES

Saltzer and Schroeder present the following  principles as being employed in the area
of  physical  security.   They observe that these  principles  do  not  apply  as  well  to
computer systems as do the principles discussed earlier.  We have found that this is
similarly the case for some  of  the integrity mechanisms we have examined.

2.1 WORK FACTOR

This principle permits the use of mechanisms  that  are vulnerable to systematic
attack, because the cost or  amount of work involved in the attack is out of proportion  to
the value of the protected objects.  It is a weaker mechanism by definition, since many
alternate protection  mechanisms  are not vulnerable  to  systematic  attacks,  but  can
only  be defeated by a hardware failure, design error,  etc.  Besides this inherent
vulnerability, another  problem  is  that  the actual work factor which  is implemented
may  be  hard  to  determine  exactly  or  may sometimes   be  reduced   through
automated  attacks.   In particular,  a  mechanism that may give  an intolerable work
factor in a  manual system  may be quite easy to attack on a computer system,  since  the
computer,  being  designed  to perform   difficult,  repetitive  tasks,  will  perform  the
difficult work for the attacker. Thus the computer can often be  used  as  a  tool  to assist
in an attack upon  its own security mechanisms.



2.2 COMPROMISE RECORDING

This principle calls  for  the  accurate  reporting  of information compromise as a
substitute for relying  on  more complex, preventive mechanisms.  This principle  is  not
as strong in computer systems, since  the  reporting  mechanism itself must be protected
from  tampering  and  interference, otherwise violations may not be recorded.  If the
reporting mechanism is co-resident on the system being  protected,  an intruder may be
able to gain access to the reporting mechanism at the same time the intruder  gains
access  to  other resources.

3  FUNCTIONAL CONTROL LEVELS

Saltzer and Schroeder also offer  a  categorization  of protection functionality, or ``the
kinds of  access  control that can be expressed naturally and enforced.''  This  func-
tionality is the result of  design  decisions,  with  higher levels of functionality being
harder to attain in  implementation. The authors also discuss a concept which is
independent of the level of functionality:  dynamics of use.   This term refers to the way
in which access privileges are specified, and how the system allows modification of that
specification. They mention that while static expressions of protection are (relatively)
easy to implement, dynamic specification (requests to change the specification which are
made by executing programs) can introduce considerable complexity into the system.

Two problems associated with the dynamics  of  use  are access determination and
access  revocation.   The  authors also mention that while the focus of their paper is on
protection concerns which are internal to  the  computer,  some functionality may be
added through external protection methods. A short summary of the authors'
categorization follows.

3.1 UNPROTECTED SYSTEMS

These systems are not stressed, but they are worth mentioning because they were the
most common type then  in  use (1975). Essentially, these systems have no inherent,
effective means of preventing any user from access to all  information on the system.
Examples are  batch  data  processing systems and most popular PC operating systems.
This is of concern in the light of the widespread use  of PCs  today,  including  analogous
machines  in the tactical systems   environment.   These   systems   offer  ``mistake-
prevention  features,'' but no real security.  Such features just  ensure that breaches of
control are intentional rather than  accidental.

3.2 ALL-OR-NOTHING SYSTEMS

The main feature of these systems is the  isolation  of user environments and
information.  This isolation is  sometimes moderated by such features as a public library
mechanism, with users able  to  contribute  information  to  that library.  Still, the
emphasis is on all users  having  equal access privileges, and all users have a view of  the
system as if it were a private machine.



3.3 CONTROLLED SHARING

A significant rise in complexity is required  in  these systems, which control access to
each  data  item.   Access control lists are a typical mechanism  which  enforces
controlled sharing.  Although conceptually simple, the  control mechanisms tend to be
intricate and difficult in implementation.  Generic access types  (e.g.,  read,  write,
execute) tend to be system defined to  allow  specification  of  user access privileges.

3.4 USER-PROGRAMMED SHARING CONTROLS

These systems allow users to restrict access  to  files in non-standard  ways  (as
defined  by  the  system).   For example,  time  constraints  may  be  imposed  upon
certain accesses, or multiple users' privileges (or actions) may  be required for other
accesses.  These systems often  implement the concept of protected objects and
subsystems   (emphasis in original), which effectively confines all accesses to the
protected objects to programs within the  protected  subsystems. Entry to the subsystem
is confined to specified  entry points, allowing users to develop any programmable  form
of access control for objects created by the user.  Other  concepts include content-based
and context-based (access) decision policies.

3.5 LABELLING INFORMATION

The previous three types of systems address the  conditions under which an
executing program is allowed access  to information.  In addition  there  are  other
systems  which attempt to bring about continuing access control  after  the initial access
decision. These systems also prevent or  control the propagation of access privileges.  A
typical  technique employed by these systems is the use of labels on data objects, which
are used by the  protection  mechanism(s)  to make access decisions.  The authors state
that such systems are rare and incomplete.  This is still true  today, but  not to the same
extent as when the paper was published.



ACRONYMS
ACF2       Access Control Facility 2
ACL        Access Control List
AIS         Automated Information Systems
C            Certification
CDI        Constrained Data Item
CIC         Combat Information Center
CPU        Central Processing Unit
DBMS      Database Management System
DDT        Domain Definition Table
DNA        Deoxyribonucleic Acid
DoD        Department of Defense
DTT        Domain Transition Table
E            Enforcement
I&A        Identification & Authentication
I/O         Input/Output
IC           Integrated Circuit
ICAP       Identity-based Capability
ID           Identification or Identifier
INFOSEC Information Security
ISO       International Standards Organization
IVP       Integrity Verification Procedures
LED      Light Emitting Diode
LOCK    Logical Coprocessor Kernel
MMU     Memory Management Unit
NCSC    National Computer Security Center
PC         Personal Computer
RACF    Resource Access Control Facility
ROM     Read-Only Memory
SAT       Secure Ada Target
SCAP     Secure Capability
SMTP     Simple Mail Transfer Protocol
TCB       Trusted Computing Base
TCSEC   Trusted Computer System Evaluation  Criteria



TOP     Tagged Object Processor
TP       Transformation Procedure
UDI     Unconstrained Data Item



GLOSSARY
abstract data type.  A mechanism which associates a  set  of permissible values and
operations with an  identified  class of objects.  See type.

access control list.   A  special  case  of access  control tuples, where the specification of
access to  an  object  is implied by grouping  all  subject  and  permitted  operation
information into a list, and attaching the list directly  to the object.

access deterrence.  A design principle for  security  mechanisms which is based on a
user's fear of detection of violations of security policies rather than  absolute  prevention
of violations.

access time minimization.  A  risk-reducing  principle  that attempts to avoid
prolonging access time to specific data or to the system beyond what is needed to carry
out  requisite functionality.

access triple.  A type of access control specification  proposed in [Clark 1987] in which a
user,  program,  and  data item are listed for each allowed operation.

accountability.  A principle which calls for  holding  individuals responsible for their
actions.   In  automated  systems, this is enabled through Identification and
Authentication (I&A), the specification of authorized actions, and the auditing of the
user's activity.

actor.  A term used to describe an object in object-oriented systems, where the object
consists  of  both  data  and  the operations which manipulate the data contents.

agent.  A term used to denote a user or an automated  surrogate acting on behalf of a
user.

alarm.  A signal that warns or alerts [Webster 1988].

anticipation.  A technique related to polling, in which  the resource detects that it has not
been accessed by an  active subject within an expected interval.

atomicity.  A property of a transaction in which  each  data item involved is  either
transformed  from  one  unimpaired state to a new unimpaired state, or the  initial
unimpaired state is restored if the transaction fails.

authorization.  The principle whereby allowable actions  are distinguished from those
which are not.

authorization override.  The  ability  to  take  a  definite action under exceptional
circumstances to circumvent  normal controls. authorized actions.  The set of actions
which a  subject  is allowed to perform.

availability.  In computer  security,  availability  denotes the goal of ensuring that
information and  information  processing resources both remain readily  accessible  to
their authorized users.

check digit.  A checksum  calculated  on  each  digit  of  a numeric string (e.g., parity



bits).

brevity codes.  A shortened form  of  standardized  messages which reduces the amount
of input required  by  valid  users  while often hiding the message type,  or  other
information obtained from the user interface, from unauthorized users.

capabilities.  A protected identifier that  both  identifies the object and specifies the
access rights to be allowed  to the accessor who possesses the capability. In a  capability-
based system, access to protected objects such as  files  is granted if the would-be
accessor possesses a capability  for the object [NCSC 1988].

category.  A restrictive label  that  has  been  applied  to classified or unclassified data as
a means of increasing the protection of the data and further restricting access to the data
[NCSC 1988].

chained checksum.  A checksum technique in which the hashing function is a function
of data content and previous checksum values.

checksum.  A numeric value which is computed (by  some  particular algorithm) based
on the entire contents  of  a  data object.

Chinese Wall model.  A model presented in [Brewer  1989]  to address confidentiality
policies in the context of   dynamically changing access permissions.

classification.  (1) In data security, a determination  that information requires, in the
interest of national  security, a specific degree of protection against unauthorized
disclosure together with a  designation  signifying  that  such  a determination has been
made [Longley 1987].  (2)  Systematic arrangement in groups or categories according to
established criteria [Webster 1988].

conditional authorization.  A type of authorization which is activated only at the
occurrence of conditioning events.

conditional enabling.  A type of control  in  which  actions are physically disabled
unless  an  authorization  for  the action is granted.

conditioning events.  Events which are  specified  as  being sufficient to invoke a
reaction from a conditionally authorized subject.

confidentiality.  The concept of holding sensitive  data  in confidence, limited to an
appropriate set of individuals  or organizations [NCSC 1988].

configuration management.  The management of  security  features and assurances
through control of changes  made  to  a system's hardware, software, firmware,
documentation,  test, test fixtures and test documentation throughout the development
and operational life of the system [NCSC 1988].

constraint.  The state of being checked, restricted, or compelled to avoid or perform
some action [Webster 1988].

cryptographic checksum.  A checksum computed by an algorithm which produces a
unique value for each possible  data  value of the object.



cryptography.  The principles, means and methods for rendering information
unintelligible, and for restoring  encrypted information to intelligible form [NCSC 1988].

data attribute checks. A verification that data has particular attributes.

data compression.  Techniques which reduce the size of  data objects by encoding
redundancies in the data to a more  compact form.

data integrity.  The attribute of data relating to the preservation of (1) its meaning and
completeness, (2)  the  consistency of its representation(s), and  (3)  its  correspondence to
what it represents.  See integrity.

data minimization. A generalization  of  the  principle  of variable minimization, in
which the standardized parts of  a message or data are replaced by a much shorter code,
thereby reducing the risk of erroneous actions or improper use.

data movement primitives.  A method  of  controlling  shared objects by providing
primitive operations which  (logically) move the shared object into private  addressing
space  when being accessed, thus preventing simultaneous access  to  the object by
another process.

denial of service.  Any action or  series  of  actions  that prevent any part of a system
from functioning in  accordance with its intended purpose.  This includes  any  action
that causes unauthorized destruction, modification, or  delay  of service [NCSC 1988].

digital signature.  In authentication, a data block appended to a message, or a complete
encrypted message, such that the recipient can authenticate the message contents and/
or prove that it  could  only  have  originated  with  the  purported sender.  The digital
signature is a function of (1) the message, transaction or  document  to  be  signed   (2)
secret information known only to the sender and (3) public information employed in the
validation process [Longley 1987].

discrete value checks.  A verification that data has  either certain permissible values or
does not have other restricted values, out of a wider set of possible values.

discretionary access control. A means of restricting access to objects based on the
identity  and  need-to-know  of  the user, process and/or groups to which they belong.
The  controls are discretionary in the sense that a subject  with  a certain access
permission is capable of passing that permission (perhaps indirectly) on  to  any  other
subject  [NCSC 1988].

domain.  The unique context (e.g.,  access  control  parameters) in which a program is
operating.  In effect,  the  set of objects that a subject has the ability  to  access  [NCSC
1988].

duplication  protocol.   A  communications  protocol which duplicates the data being
sent in  order  to  provide  fault tolerance.

duty.  A required task, conduct,  service,  and/or  function that constitute what one must
do and the manner in which  it should be done.

dynamics of use.  Pertaining to  the  way  in  which  access privileges are specified, and



how the system allows  modification of that specification [Saltzer 1975].

embedded system.  A system that performs or controls a function, either in whole or in
part, as an integral element  of a larger system or subsystem [NCSC 1988].

encapsulation. The principle of  structuring  hardware  and software components such
that the interface  between  components is clean and well-defined, and that exposed
means  of input, output, and control other than those  that  exist  in the interface do not
exist.

encryption.  See cryptography.

error correcting code.  A technique in which the information content of the error-control
data of a data unit can be used to correct errors in the message data of that unit.

error correction.  Techniques which attempt to recover  from detected data transmission
errors.

event constraint.  A type of constraint in which the  active agent must perform an action
or  set  of  actions  within  a specified bound of time.

fault tolerance.  The ability of a  system  to  continue  to perform its tasks after the
occurrence  of  faults  [Johnson 1989].

gate.  An encapsulation implementation technique which  provides access between
domains  only  via  specific  locations (the gates) which provide a well-defined,
controlled  interface.

handshaking protocol.  Techniques in which two or more  communicating entities
exchange information about successful or unsuccessful reception of data for error
control.

hierarchical supervision.  A technique  in  which  integrity critical actions are handled or
controlled by a more trusted or more experienced user while  less  critical  actions  are
delegated to subordinates.

identity.  The sameness in all that constitutes  the  objective reality of a thing: oneness;
and is the  distinguishing character of a thing:  individuality [Webster 1988].

individuation.  The determination of the individual  in  the general [Webster 1988].

integrity. (1) A subgoal of computer security which pertains to ensuring that data
continues to be a  proper  representation  of  information,  and  that   information
processing resources continue to perform correct processing operations. (2) A subgoal of
computer security which pertains to  ensuring that information retains its original level
of accuracy. (3) Sound, unimpaired or perfect condition [NCSC 1988].  See data integrity,
system integrity.

label.  Written or printed matter accompanying an article to furnish identification or
other information [Webster  1988]. See security label.



least privilege.  The principle that requires that each subject be granted  the  most
restrictive  set  of  privileges  needed for the performance of authorized tasks.  The  appli-
cation of this principle limits the damage that  can  result from accident, error, or
unauthorized use [NCSC 1988].

mandatory access control.  A means of restricting access  to objects based on the
sensitivity (as represented by a label) of the information contained in the objects and  the
formal authorization (i.e., clearance) of subjects to access information of such sensitivity
[NCSC 1988].

minimization.  A  risk-reducing  principle  that   supports integrity by containing the
exposure  of  data  or  limiting opportunities to violate integrity.

minimizing target value.   A  risk-reducing  practice  which stresses the reduction of
potential losses incurred due to a successful attack,  and/or  the  reduction  of  benefits
an attacker  might receive in carrying out such an attack.

monitor.  To watch, observe, or check-especially for a  special purpose [Webster 1988].

mutual exclusion.  The guarantee of exclusive  access  to  a given data item for the
purpose  of  completing  a  critical action in order to  avoid  interference  by  other
entities attempting to simultaneously access the same data item.

N-person control.  A method of controlling  the  actions  of subjects by distributing a
task among more than one (N) subjects.

noninterference.   A  concept  proposed  in  [Goguen   1982] whereby a member of
particular class cannot initiate actions  that affect what is  observed  by  members  of  a
different class.

non-reversible action.  A type of action which supports  the principle  of  accountability
by  preventing  the  reversal and/or concealment of  activity  associated  with  sensitive
objects.

notarization.  The authentication  of  an  object  which  is being transferred between  two
parties  by  an  independent entity.

object. A passive entity that contains or receives  information.  Access to an object
potentially implies access to the information it contains.  Examples of objects  are
records, blocks,  pages,  segments,  files,  directories,   directory trees, and programs, as
well as bits, bytes, words,  fields, processors, video displays, keyboards, clocks, printers,
and network nodes [NCSC 1988].

obligation.  The binding, constraining, or commitment of  an individual or an active
agent to a course of action.

privilege.  (1) In operations, pertaining to  a  program  or user and characterizing the
type of operation  that  can  be performed  [Longley 1987].  (2) An authorization to
perform an action.



privilege states.  The states of a system in  which  a  normally prohibited set of actions
are allowed.  Typically, use of privilege states  is  limited  to  ``trusted  processes'' which
are known or believed to use the  normally  prohibited actions only in specific,
controlled ways.   See protection ring.

process sequencing.  A technique which controls the order in which specific tasks or
subtasks are completed.

protection ring.  One of a hierarchy of privileged modes  of a system that gives certain
access rights to  user  programs and processes authorized to operate in a given mode.

protocol.  (1) A code prescribing strict adherence  to  correct procedures. (2) In
telecommunications, it is a  set  of characters at the  beginning  and  end  of  a  message
that enables communications between computers at various abstract service  layers.
These  layers   establish   peer-entities between the communicating systems.

range checks.  A verification that data is within a  certain range of values.

read.  A fundamental operation that results only in the flow of information from an
object to a subject [NCSC 1988].

receive.  A communications-oriented  generalization  of  the read operation.

redundancy.  (1) The part of a message  that  can  be  eliminated without loss of essential
information.  (2)  The  use of duplicate components to prevent failure of an entire system
upon failure of a single component.

responsibility.  Being answerable for what one does.

reversible action.  An action that, once initiated,  can  be undone leaving the object being
acted upon in a state as  if the action had never been initiated.

risk reduction.  The function of reducing one or more of the factors of risk,  e.g.,  value
at  risk,  vulnerability  to attack, threat of attack, protection from risk.

role.  A distinct set of operations required to perform some particular function.

rotation of duty.  A method of reducing the risk  associated with a subject performing a
(sensitive) task by limiting the amount of time the subject is assigned to perform  the
task before being moved to a different task.

routine variation.  The risk-reducing principle which underlies  techniques  which
reduce  the  ability  of  potential attackers to anticipate scheduled events in order  to
minimize associated vulnerabilities.

run-to-run totals.  Checksums which are applied to sequenced data, in which the
hashing function is made  a  function  of the previously seen data.

security label.  A piece of information that represents  the security level of an object
[NCSC 1988].



security model.  A formal presentation of the security  policy enforced by the system. It
must  identify  the  set  of rules and practices that regulate how a system manages, pro-
tects, and distributes sensitive information [NCSC 1988].

security policy.  The set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information [NCSC 1988].

send.  A communications-oriented generalization of the write operation.

sensitive information.  Any information, the  loss,  misuse, modification of, or
unauthorized access to, could affect the national interest or the conduct of Federal
programs, or the privacy to which individuals are entitled under Section 552a of Title 5,
U. S. Code, but that has not  been  specifically authorized under criteria established by an
Executive  order or an act of Congress to be kept classified in the  interest of national
defense or foreign policy [NCSC 1988].

separation.  An intervening space established by the act  of setting or keeping apart.

separation of duty.  The partitioning of tasks  and  associated privileges among different
users  or  subjects,  or  to different, mutually-exclusive roles associated with a single
user.

separation of  name  spaces. A  technique  of  controlling access by precluding sharing-
names given to objects are only meaningful to a single subject and thus cannot be
addressed by other subjects.

serializability.  Having  the  capability  to  consecutively order all actions in a logical
transaction schedule.

strong typing.  The application of type  enforcement  during all operations upon
instances of abstract data types  within a system or program.

summary integrity check.  A method for checking the correct-

ness of data by comparing it with a ``summary'' of the data.

See checksum.

subject. An active entity, generally in the form of a  person, process, or device, that
causes  information  to  flow among objects or changes the system  state.  Technically,  a
process/domain pair [NCSC 1988].

supervisory control.  A  method  of  controlling  particular

actions of a subject by making those  actions  dependent  on

the authorization of a supervisor.

system integrity.  The attribute of a system relating to the successful and correct
operation  of  computing  resources. See integrity.



tactical system.  A system which is used as an integral part of or in support of a
weapon(s) system.

theft of service.  The unauthorized use of information  processing resources. time
stamping.  The method of including an unforgeable  time stamp with object structures,
used for a variety of  reasons such as sequence numbering and expiration of data.

timeouts for inactivity.  The setting  of  time  limits  for  either specific activities or for
non-activity.  See anticipation.

Tranquillity Principle.  A requirement  that  changes  to  an object's access control
attributes be prohibited as long  as any subject has access to the object.

transmittal list.  A list, stored and transmitted with  particular data items, which
identifies the data in that  batch and can be used to verify that no data are missing.

Trojan horse.  A computer  program  with  an  apparently  or actually useful function
that contains  additional  (hidden) functions  that  surreptitiously  exploit   the
legitimate authorizations of the invoking process to the  detriment  of security or
integrity [NCSC 1988].

trusted computing base (TCB).  The  totality  of  protection mechanisms within a
computer  system,  including  hardware, firmware, and software, the combination of
which is  responsible for enforcing a security policy.  A  TCB  consists  of one or more
components that together enforce a unified security policy over a product or system.
The ability of a  TCB to enforce  correctly  a  unified  security  policy  depends solely on
the mechanisms within the TCB and on  the  correct input  by  system  administrative
personnel  of  parameters (e.g., a user's clearance level)  related  to  the  security policy
[NCSC 1988].

trusted path.  A mechanism by which a person at  a  terminal can communicate directly
with  the  TCB  [trusted  computing

base]. This mechanism can only be activated by the person or the TCB and cannot be
imitated by untrusted  software  [NCSC 1988].

two-phase commit protocol.  A mechanism which  requires  the logging of a record for
all  actions  to  ensure  that  any transaction either completely succeeds,  or  may  be
rolled back so that effectively no changes have occurred.

type.  In programming, pertaining to the range of values and valid operations associated
with a variable [Longley 1987].

type enforcement.  The enforcement of  allowable  operations on an instance of an
abstract data type, and on the  permissible values that instance may take.  See strong
typing.

unconditional authorization.  A type of authorization  which enables immediate action
on the part of the authorized  subject.



value checks.  A precursor to type  enforcement  mechanisms, value checks are checks
against a definition  of  meaningful values through explicit enumeration and/or
exclusion.

variable minimization.  A method of reducing the  number  of variables to which a
subject  has  access  to  the  minimum required, thereby reducing the risk of malicious or
erroneous actions by that subject.  This concept can  be  generalized to include data
minimization.

version control.  A mechanism which allows distinct versions of an object to be
identified and associated  with  independent attributes in a well-defined manner.
virus.  A self-propagating Trojan horse, composed of a  mission component, a trigger
component, and a  self-propagating component [NCSC 1988].

well-formed transaction.  Proposed  in  [Clark  1987]  as  a mechanism to prevent a user
from manipulating  a  data  item arbitrarily, but rather in constrained ways that preserve
or ensure the internal consistency of data.

wholeness.  Having all its parts or components-includes both the sense of  unimpaired
condition  (i.e.,  soundness)  and being complete and undivided (i.e., completeness).

write.  A fundamental operation that  results  only  in  the flow of information from a
subject to an object [NCSC 1988].

X.25.  An International  Organization  for  Standards  (ISO) telecommunications standard
for the network  and  data  link levels of a communications network.


