
 C TECHNICAL REPORT 79-91

 Library No. S-237,254

 (IDA PAPER P-2316)

 September 1991

INTEGRITY IN AUTOMATED
INFORMATION SYSTEMS

Prepared for

National Computer Security Center (NCSC)

by

Terry Mayfield

J. Eric Roskos

Stephen R. Welke

John M. Boone

INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311

FOREWORD
This NCSC Technical Report, ``Integrity in Automated Information Systems,'' is

issued by the National Computer Security Center (NCSC) under the authority of and in
accordance with Department of Defense (DoD) Directive 5215.1, ``Computer Security
Evaluation Center.'' This Publication contains technical observations, opinions, and
evidence prepared for individuals involved with computer security.

Recommendations for revision to this publication are encouraged and will be
reviewed periodically by the NCSC. Address all proposals for revision through
appropriate channels to:

 National Computer Security Center

 9800 Savage Road

 Fort George G. Meade, MD 20755-6000

 Attention: Chief, Standards, Criteria & Guidelines Division

Reviewed by:_________________________________ September 1991

RON S. ROSS, LTC (USA)

Chief, Standards, Criteria & Guidelines Division

Released by:_________________________________ September 1991

THOMAS R. MALARKEY

Chief, Office of Computer Security Publications and Support

TABLE OF CONTENTS
 1. INTRODUCTION.. 1

 1.1 PURPOSE... 1

 1.2 BACKGROUND.. 1

 1.3 SCOPE... 3

 2. DEFINING INTEGRITY.. 5

 2.1 DATA INTEGRITY... 6

 2.2 SYSTEMS INTEGRITY... 6

 2.3 INFORMATION SYSTEM PROTECTION GOALS................................... 7

 2.4 INTEGRITY GOALS.. 8

 2.4.1 Preventing Unauthorized Users From Making Modifications.......... 8

 2.4.2 Maintaining Internal and External Consistency................................... 8

 2.4.3 Preventing Authorized Users From Making Improper Modifications.... 9

 2.5 CONCEPTUAL CONSTRAINTS IMPORTANT TO INTEGRITY................. 9

 2.5.1 Adherence to a Code of Behavior... 10

 2.5.2 Wholeness.. 11

 2.5.3 Risk Reduction... 11

 3. INTEGRITY PRINCIPLES.. 15

 3.1 IDENTITY.. 15

 3.2 CONSTRAINTS... 16

 3.3 OBLIGATION... 16

 3.4 ACCOUNTABILITY.. 17

 3.5 AUTHORIZATION... 18

 3.6 LEAST PRIVILEGE... 18

 3.7 SEPARATION... 19

 3.8 MONITORING... 20

 3.9 ALARMS... 21

 3.10 NON-REVERSIBLE ACTIONS... 21

 3.11 REVERSIBLE ACTIONS.. 22

 3.12 REDUNDANCY... 22

 3.13 MINIMIZATION.. 23

 3.13.1 Variable Minimization.. 23

 3.13.2 Data Minimization... 24

 3.13.3 Target Value Minimization.. 24

 3.13.4 Access Time Minimization... 24

 3.14 ROUTINE VARIATION... 25

 3.15 ELIMINATION OF CONCEALMENT... 25

 3.16 ACCESS DETERRENCE.. 26

 4. INTEGRITY MECHANISMS.. 27

 4.1 POLICY OF IDENTIFICATION AND AUTHENTICATION.................. 29

 4.1.1 Policy of User Identification and Authentication............................... 29

 4.1.2 Policy of Originating Device Identification.. 32

 4.1.2.1 Mechanism of Device Identification.. 32

 4.1.3 Policy of Object Identification and Authentication........................... 33

 4.1.3.1 Mechanism of Configuration Management.............................. . 37

 4.1.3.2 Mechanism of Version Control... 38

 4.1.3.3 Mechanism of Notarization... 38

 4.1.3.4 Mechanism of Time Stamps.. 39

 4.1.3.5 Mechanism of Encryption.. 39

 4.1.3.6 Mechanism of Digital Signatures... 40

 4.2 POLICY OF AUTHORIZED ACTIONS.. 40

 4.2.1 Policy of Conditional Authorization.. 41

 4.2.1.1 Mechanism Conditional Enabling... 41

 4.2.1.2 Mechanism of Value Checks... 42

 4.2.2 Policy of Separation of Duties... 43

 4.2.2.1 Mechanism of Rotation of Duties.. 45

 4.2.2.2 Mechanism of Supervisory Control... 46

 4.2.2.3 Mechanism of N-Person Control... 47

 4.2.2.4 Mechanism of Process Sequencing.. 47

 4.3 POLICY OF SEPARATION OF RESOURCES... 48

 4.3.1 Policy of Address Separation.. 49

 4.3.1.1 Mechanism of Separation of Name Spaces.................................. 49

 4.3.1.2 Mechanism of Descriptors... 50

 4.3.2 Policy of Encapsulation.. 51

 4.3.2.1 Mechanism of Abstract Data Types... 52

 4.3.2.2 Mechanism of Strong Typing.. 53

 4.3.2.3 Mechanism of Domains.. 54

 4.3.2.4 Mechanism of Actors.. 54

 4.3.2.5 Mechanism of Message Passing... 55

 4.3.2.6 Mechanism of the Data Movement Primitives................................ 56

 4.3.2.7 Mechanism of Gates.. 56

 4.3.3 Policy of Access Control... 56

 4.3.3.1 Mechanism of Capabilities.. 57

 4.3.3.2 Mechanism of Access Control Lists.. 57

 4.3.3.3 Mechanism of Access Control Triples.. 58

 4.3.3.4 Mechanism of Labels... 59

 4.4 POLICY OF FAULT TOLERANCE... 60

 4.4.1 Policy of Summary Integrity Checks... 60

 4.4.1.1 Mechanism of Transmittal Lists.. 60

 4.4.1.2 Mechanism of Checksums.. 61

 4.4.1.3 Mechanism of Cryptographic Checksums.. 61

 4.4.1.4 Mechanism of Chained Checksums... 62

 4.4.1.5 Mechanism of the Check Digit... 62

 4.4.2 Policy of Error Correction.. 62

 4.4.2.1 Mechanism of Duplication Protocols...................................... 63

 4.4.2.2 Mechanism of Handshaking Protocols................................... 63

 4.4.2.3 Mechanism of Error Correcting Codes.................................... 64

 5. INTEGRITY MODELS AND MODEL IMPLEMENTATIONS.................. 67

 5.1 INTEGRITY MODELS... 67

 5.1.1 Biba Model... 67

 5.1.1.1 Discussion of Biba.. 67

 5.1.1.1.1 Low-Water Mark Policy... 69

 5.1.1.1.2 Low-Water Mark Policy for Objects............................... 69

 5.1.1.1.3 Low Water Mark Integrity Audit Policy........................ 69

 5.1.1.1.4 Ring Policy.. 70

 5.1.1.1.5 Strict Integrity Policy.. 70

 5.1.1.2 Analysis of Biba.. 71

 5.1.2 GOGUEN AND MESEGUER MODEL.. 72

 5.1.2.1 Discussion of Goguen and Meseguer....................................... 72

 5.1.2.1.1 Ordinary State Machine Component.............................. 73

 5.1.2.1.2 Capability Machine Component..................................... 74

 5.1.2.1.3 Capability System... 74

 5.1.2.2 Analysis of Goguen and Meseguer.. 75

 5.1.3 SUTHERLAND MODEL.. 76

 5.1.3.1 Discussion of Sutherland.. 76

 5.1.3.2 Analysis of Sutherland.. 78

 5.1.4 CLARK AND WILSON MODEL... 78

 5.1.4.1 Discussion of Clark and Wilson.. 78

 5.1.4.2 Analysis of Clark and Wilson.. 80

 5.1.5 BREWER AND NASH MODEL... 82

 5.1.5.1 Discussion of Brewer and Nash.. 82

 5.1.5.2 Analysis of Brewer and Nash.. 85

 5.1.6 SUMMARY OF MODELS.. 86

 5.2 INTEGRITY MODEL IMPLEMENTATIONS.. 86

 5.2.1 LIPNER IMPLEMENTATION.. 87

 5.2.1.1 Discussion of Lipner... 87

 5.2.1.2 Analysis of Lipner... 88

 5.2.2 BOEBERT AND KAIN IMPLEMENTATION...................................... 90

 5.2.2.1 Discussion of Boebert and Kain... 90

 5.2.2.2 Analysis of Boebert and Kain.. 91

 5.2.3 LEE AND SHOCKLEY IMPLEMENTATIONS...................................... 92

 5.2.3.1 Discussion of Lee and Shockley... 92

 5.2.3.2 Analysis of Lee and Shockley... 93

 5.2.4 KARGER IMPLEMENTATION... 94

 5.2.4.1 Discussion of Karger.. 94

 5.2.4.2 Analysis of Karger.. 95

 5.2.5 JUENEMAN IMPLEMENTATION... 96

 5.2.5.1 Discussion of Jueneman... 96

 5.2.5.1.1 Subject Integrity Label... 97

 5.2.5.1.2 Data File Integrity Label... 97

 5.2.5.1.3 Program Integrity Label.. 98

 5.2.5.2 Analysis of Jueneman.. 98

 5.2.6 GONG IMPLEMENTATION... 99

 5.2.6.1 Discussion of Gong... 99

 5.2.6.2 Analysis of Gong.. 102

 5.2.7 SUMMARY OF MODEL IMPLEMENTATIONS....................................... 103

 5.3 GENERAL ANALYSIS OF MODELS AND

 MODEL IMPLEMENTATIONS.. 103

 5.3.1 Hierarchical Levels.. 104

 5.3.2 Non-hierarchical categories... 104

 5.3.3 Access Control Triples... 104

 5.3.4 Protected Subsystems... 105

 5.3.5 Digital Signatures/Encryption.. 105

 5.3.6 Combination of Capabilities and ACLs.. 105

 5.3.7 Summary of General Analysis... 105

 6. CONCLUSIONS... 107

 6.1 SUMMARY OF PAPER... 107

 6.2 SIGNIFICANCE OF PAPER.. 108

 6.3 FUTURE RESEARCH... 109

 REFERENCE LIST.. 111

 APPENDIX - GENERAL INTEGRITY PRINCIPLES.. 117

 1. TRADITIONAL DESIGN PRINCIPLES.. 117

 1.1 ECONOMY OF MECHANISM.. 117

 1.2 FAIL-SAFE DEFAULTS... 118

 1.3 COMPLETE MEDIATION.. 118

 1.4 OPEN DESIGN... 118

 1.5 SEPARATION OF PRIVILEGE... 118

 1.6 LEAST PRIVILEGE... 118

 1.7 LEAST COMMON MECHANISM... 119

 1.8 PSYCHOLOGICAL ACCEPTABILITY.. 119

 2. ADDITIONAL DESIGN PRINCIPLES.. 119

 2.1 WORK FACTOR... 119

 2.2 COMPROMISE RECORDING... 120

 3. FUNCTIONAL CONTROL LEVELS.. 120

 3.1 UNPROTECTED SYSTEMS... 120

 3.2 ALL-OR-NOTHING SYSTEMS... 121

 3.3 CONTROLLED SHARING.. 121

 3.4 USER-PROGRAMMED SHARING CONTROLS................................ 121

 3.5 LABELLING INFORMATION... 121

 ACRONYMS.. 123

 GLOSSARY... 125

LIST OF FIGURES

 Figure 1. Integrity Framework... 13

 Figure 2. Cascade Connection of Capability System.................................... 74

LIST OF TABLES

TABLE 1. Integrity Mechanisms Grouped by Policy and SubPolicy............. 28

EXECUTIVE SUMMARY

As public, private, and defense sectors of our society have become increasingly
dependent on widely used interconnected computers for carrying out critical as well as
more mundane tasks, integrity of these systems and their data has become a significant
concern. The purpose of this paper is not to motivate people to recognize the need for
integrity, but rather to motivate the use of what we know about integrity and to
stimulate more interest in research to standardize integrity properties of systems.

For some time, both integrity and confidentiality have been regarded as inherent
parts of information security. However, in the past, more emphasis has been placed on
the standardization of confidentiality properties of computer systems. This paper shows
that there is a significant amount of information available about integrity and integrity
mechanisms, and that such information can be beneficial in starting to formulate
standardizing criteria. We have gone beyond the definition of integrity and provided
material that will be useful to system designers, criteria developers, and those
individuals trying to gain a better understanding of the concepts of data and systems
integrity. This paper provides foundational material to continue the efforts toward
developing criteria for building products that preserve and promote integrity.

We begin by discussing the difficulty of trying to provide a single definition for the
term integrity as it applies to data and systems. Integrity implies meeting a set of defined
expectations. We want a system that protects itself and its data from unauthorized or
inappropriate actions, and performs in its environment in accordance with its users'
expectations. We also expect internal data and any transformations of that data to
maintain a correct, complete and consistent correspondence to itself and to what it
represents in the external environment. Addressing these multiple views in a single
definition is difficult. We conclude that a single definition is not needed. An operational
definition, or framework, that encompasses various views of the issue seems more
appropriate. The resulting framework provides a means to address both data and
systems integrity and to gain an understanding of important principles that underlie
integrity. It provides a context for examining integrity preserving mechanisms and for
understanding the integrity elements that need to be included in system security
policies.

We extract a set of fundamental principles related to integrity. These are based on
our framework, a review of various written material on the topic of integrity, and an
investigation of existing mechanisms deemed to be important to preserving and
promoting integrity. These principles underlie the wide variety of both manual and
automated mechanisms that are examined. The mechanisms have been categorized to
show that they serve a relatively small set of distinct purposes or policies. Some
mechanisms that promote integrity are not documented in traditional literature and not
all of the mechanisms addressed here are implemented in computer systems. All of these
do, however, provide insight into some of the controls necessary and the types of threats
that automated integrity mechanisms must counter. We also provide an overview of

several models and model implementations (paper studies) of integrity. These models
are still rather primitive with respect to the range of coverage suggested by examining
both data and systems integrity. The model we found to be receiving the most attention
at this time is the Clerk-Lesion Model. Although this is not a formal mathematical
model, it provides a fresh and useful point of departure for examining issues of
integrity.

From this study, we conclude that it is possible to begin to standardize data and
systems integrity properties. Principles exist, trial policies can be formulated and
modelled, and mechanisms can be applied at various layers of abstraction within a
system. The Institute for Defense Analyses (IDA) has initiated a follow-on study to look
at the allocation and layering of mechanisms. We also conclude that there are gaps in our
information and that the standardization process could help guide certain studies. Such
studies should include the analysis of existing interfaces and protocols to determine the
appropriate integrity interfaces or the need to design new protocols. Other
demonstration/validation studies should be conducted to show that mechanisms are
workable, interfaces are well understood, protocol concepts are valid, and standardized
criteria are testable. We conclude that criteria development efforts can occur
concurrently with the protocol and demonstration/validation studies.

ACKNOWLEDGMENTS
The National Computer Security Center extends special recognition to the principle

authors from the Institute for Defense Analyses (IDA): Terry Mayfield (Task Leader), Dr.
J. Eric Roskos, Stephen R. Welke, John M. Boone, and Catherine W. McDonald, as well
as the Project Leader (NSA C81), Maj. Melvin De Vilbiss (USA).

We wish to thank the external reviewers who provided technical comments and
suggestions to earlier versions of this report. Their contributions have caused this
document to evolve significantly from the original efforts. We wish also to express
appreciation to the principle reviewers at IDA, Dr. Karen Gordon and Dr. Cy Ardoin, for
their technical support. A special thanks goes to Katydean Price for her tremendous
editorial support during the course of this project.

The principle authors have dedicated this document in memory of their close friend,
Dr. J. Eric Roskos-a talented computer scientist and colleague who performed much of
the original research for this effort. His tragic death left a tremendous gap in the research
team. Eric is often thought of and very much missed.

1 INTRODUCTION

1.1 PURPOSE

This paper provides a framework for examining integrity in computing and an
analytical survey of techniques that have potential to promote and preserve computer
system and data integrity. It is intended to be used as a general foundation for further
investigations into integrity and a focus for debate on those aspects of integrity related to
computer and automated information systems (AISs).

One of the specific further investigations is the development and evolution of
product evaluation criteria to assist the U.S. Government in the acquisition of systems
that incorporate integrity preserving mechanisms. These criteria also will help guide
computer system vendors in producing systems that can be evaluated in terms of
protection features and assurance measures needed to ascertain a degree of trust in the
product's ability to promote and preserve system and data integrity. In support of this
criteria investigation, we have provided a separate document [Mayfield 1991] that
offers potential modifications to the Control Objectives contained in the Trusted
Computer System Evaluation Criteria (TCSEC), DOD 5200.28-STD [DOD 1985]. The
modifications extend the statements of the control objectives to encompass data and
systems integrity; specific criteria remain as future work.

1.2 BACKGROUND

Integrity and confidentiality are inherent parts of information security (INFOSEC).
Confidentiality, however, is addressed in greater detail than integrity by evaluation
criteria such as the TCSEC. The emphasis on confidentiality has resulted in a significant
effort at standardizing confidentiality properties of systems, without an equivalent effort
on integrity. However, this lack of standardization effort does not mean that there is a
complete lack of mechanisms for or understanding of integrity in computing systems. A
modicum of both exists. Indeed, many well-understood protection mechanisms initially
designed to preserve integrity have been adopted as standards for preserving
confidentiality. What has not been accomplished is the coherent articulation of
requirements and implementation specifications so that integrity property
standardization can evolve. There is a need now to put a significant effort on
standardizing integrity properties of systems. This paper provides a starting point.

The original impetus for this paper derives from an examination of computer
security requirements for military tactical and embedded computer systems, during
which the need for integrity criteria for military systems became apparent. As the
military has grown dependent on complex, highly interconnected computer systems,
issues of integrity have become increasingly important. In many cases, the risks related
to disclosure of information, particularly volatile information which is to be used as soon
as it is issued, may be small. On the other hand, if this information is modified between

the time it is originated and the time it is used (e.g., weapons actions based upon it are
initiated), the modified information may cause desired actions to result in failure (e.g.,
missiles on the wrong target). When one considers the potential loss or damage to lives,
equipment, or military operations that could result when the integrity of a military
computer system is violated, it becomes more apparent why the integrity of military
computer systems can be seen to be at least as important as confidentiality.

There are many systems in which integrity may be deemed more important than
confidentiality (e.g., educational record systems, flight-reservation systems, medical
records systems, financial systems, insurance systems, personnel systems). While it is
important in many cases that the confidentiality of information in these types of systems
be preserved, it is of crucial importance that this information not be tampered with or
modified in unauthorized ways. Also included in this categorization of systems are
embedded computer systems. These systems are components incorporated to perform
one or more specific (usually control) functions within a larger system. They present a
more unique aspect of the importance of integrity as they may often have little or no
human interface to aid in providing for correct systems operation. Embedded
computer systems are not restricted to military weapons systems. Commercial
examples include anti-lock braking systems, aircraft avionics, automated milling
machines, radiology imaging equipment, and robotic actuator control systems.

Integrity can be viewed not only in the context of relative importance but also in the
historical context of developing protection mechanisms within computer systems. Many
protection mechanisms were developed originally to preserve integrity. Only later were
they recognized to be equally applicable to preserving confidentiality. One of the
earliest concerns was that programs might be able to access memory (either primary
memory or secondary memory such as disks) that was not allocated to them. As soon as
systems began to allocate resources to more than one program at a time (e.g.,
multitasking, multiprogramming, and time-sharing), it became necessary to protect the
resources allocated to the concurrent execution of routines from accidentally modifying
one another. This increased system concurrency led to a form of interleaved sharing of
the processor using two or more processor states (e.g., one for problem or user state and
a second for control or system state), as well as interrupt, privilege, and protected
address spaces implemented in hardware and software. These ``mechanisms'' became
the early foundations for ``trusted'' systems, even though they generally began wit the
intent of protecting against errors in programs rather than protecting against malicious
actions. The mechanisms were aids to help programmers debug their programs and to
protect them from their own coding errors. Since these mechanisms were designed to
protect against accidents, by themselves or without extensions they offer little protection
against malicious attacks.

Recent efforts in addressing integrity have focused primarily on defining and
modelling integrity. These efforts have raised the importance of addressing integrity
issues and the incompleteness of the TCSEC with respect to integrity. They also have
sparked renewed interest in examining what needs to be done to achieve integrity
property standardization in computing systems. While a large portion of these efforts
has been expended on attempting to define the term integrity, the attempts have not

achieved consensus. However, many of these definitions point toward a body of
concepts that can be encompassed by the term integrity. This paper takes one step
further in that it not only proposes an operational definition of integrity, but also
provides material for moving ahead without consensus. This is done through an
examination of various integrity principles, mechanisms, and the policies that they
support as well as an examination of a set of integrity models and model
implementations

1.3 SCOPE

Our examination of integrity takes several viewpoints. We begin in Section 2 by
looking at the issue of defining integrity. Here we build a framework or operational
definition of integrity that will serve our purpose in analyzing mechanisms that provide
integrity. This framework is derived from a number of sources, including: (1) what
people generally say they mean when they discuss having a system provide integrity, (2)
from dictionary definitions, and (3) other writings on the topic that we have interpreted
to provide both specific integrity goals and a context for data and system integrity.

In Section 3, we extract a set of fundamental principles from these goals and
contextual interpretations. Principles are the underlying basis on which policies and
their implementing mechanisms are built. An additional set of basic protection design
principles, extracted from Saltzer & Schroeder's tutorial paper, The Protection of
Information in Computer Systems [Saltzer 1975], has been provided as an appendix for
the convenience of the reader. These design principles apply to the general concept of
protection and, thus, are important additional considerations for standardizing integrity
preserving properties in computer systems.

Next, in Section 4, we examine a wide variety of manual and automated mechanisms
that address various problems related to integrity. Most of these mechanisms, evolving
over the course of many years, remain in use today. Several of the mechanisms intended
to promote integrity are not documented in traditional computer security literature.
Not all of the mechanisms we examine are implemented in computer systems, although
they give insight into the types of controls that need to be provided and the types of
threats that must be countered by automated integrity mechanisms. Some of the
mechanisms we examine appear primarily in embedded systems and others are found in

more familiar application environments such as accounting. The mechanisms have been
categorized to show that they serve a relatively small set of distinct purposes. We use the
term policy to describe the higher-level purpose (categorization) of a mechanism since
such a purpose generally reflects administrative courses of action devised to promote or
preserve integrity.

Independent of the mechanisms a small number of formal models has been
established with differing approaches to capturing integrity semantics. In Section 5, we
examine several models that have been proposed in the last decade to address issues of
integrity. Several paper studies have suggested implementations of these models as
possibilities for real systems. We also look at a number of these model implementations
intended to promote or preserve integrity. This examination provides us with a better
understanding of the sufficiency of coverage provided by the proposed models and
model implementations.

Finally, in Section 6, we present our study conclusions and recommend a set of
further studies that should be performed to enhance our understanding of integrity and
better enable us to standardize integrity protection properties in systems.

A reference list is provided at the end of the main body; a list of acronyms and a
glossary are provided after the appendix.

2 DEFINING INTEGRITY

Integrity is a term that does not have an agreed definition or set of definitions for use
within the INFOSEC community. The community's experience to date in trying to define
integrity provides ample evidence that it doesn't seem to be profitable to continue to try
and force a single consensus definition. Thus, we elect not to debate the merits of one
proposed definition over another. Rather, we accept that the definitions generally all
point to a single concept termed integrity.

Our position is reinforced when we refer to a dictionary; integrity has multiple
definitions [Webster 1988]. Integrity is an abstract noun. As with any abstract noun,
integrity derives more concrete meaning from the term(s) to which it is attributed and
from the relations of these terms to one another. In this case, we attribute integrity to two
separate, although interdependent, terms, i.e., data and systems. Bonyun made a similar
observation in discussing the difficulty of arriving at a consensus definition of integrity
[Bonyun 1989]. He also recognized the interdependence of the terms systems and data in
defining integrity, and submitted the proposition that ``in order to provide any measure
of assurance that the integrity of data is preserved, the integrity of the system, as a
whole, must be considered.''

Keeping this proposition in mind, we develop a conceptual framework or
operational definition which is in large part derived from the mainstream writing on the
topic and which we believe provides a clearer focus for this body of information. We
start by defining two distinct contexts of integrity in computing systems: data integrity,
which concerns the objects being processed, and systems integrity, which concerns the

behavior of the computing system in its environment. We then relate these two contexts
to a general integrity goal developed from writings on information protection. We
reinterpret this general goal into several specific integrity goals. Finally, we establish
three conceptual constraints that are important to the discussion of the preservation and
promotion of integrity. These definitions, specific goals, and conceptual constraints
provide our framework or operational definition of integrity from which we extract
integrity principles, analyze integrity mechanisms and the policies they implement, and
examine integrity models and model implementations. A diagram of this framework is
found in Figure 1 at the end of this section.

2.1 DATA INTEGRITY

Data integrity is what first comes to mind when most people speak of integrity in
computer systems. To many, it implies attributes of data such as quality, correctness,
authenticity, timeliness, accuracy, and precision. Data integrity is concerned with
preserving the meaning of information, with preserving the completeness and
consistency of its representations within the system, and with its correspondence to its
representations external to the system. It involves the successful and correct operation of
both computer hardware and software with respect to data and, where applicable, the
correct operations of the users of the computing system, e.g., data entry. Data integrity is
of primary concern in AISs that process more than one distinct type of data using the
same equipment, or that share more than one distinct group of users. It is of concern in
large scale, distributed, and networked processing systems because of the diversity and
interaction of information with which such systems must often deal, and because of the
potentially large and widespread number of users and system nodes that must interact
via such systems.

2.2 SYSTEMS INTEGRITY

Systems integrity is defined here as the successful and correct operation of
computing resources. Systems integrity is an overarching concept for computing
systems, yet on that has specific implications in embedded systems whose control is
dependent on system sensors. Systems integrity is closely related to the domain of fault
tolerance. This aspect of integrity often is not included in the traditional discussions of
integrity because it involves an aspect of computing, fault tolerance, that is often
mistakenly relegated to the hardware level. Systems integrity is only superficially a
hardware issue, and is equally applicable to the AIS environment; the embedded system
simply has less user-provided fault tolerance. In this context, it also is related closely to
the issue of system safety, e.g., the safe operation of an aircraft employing embedded
computers to maintain stable flight. In an embedded system, there is usually a much

closer connection between the computing machinery and the physical, external
environment than in a command and control system or a conventional AIS. The
command and control system or conventional AIS often serves to process information
for human users to interpret, while the embedded system most often acts in a relatively
autonomous sense.

Systems integrity is related to what is traditionally called the denial of service
problem. Denial of service covers a broad category of circumstances in which basic
system services are denied to the users. However, systems integrity is less concerned
with denial of service than with alteration of the ability of the system to perform in a
consistent and reliable manner, given an environment in which system design flaws can
be exploited to modify the operation of the system by an attacker.

For example, because an embedded system is usually very closely linked to the
environment, one of the fundamental, but less familiar, ways in which such an attack
can be accomplished is by distorting the system's view of time. This type of attack is
nearly identical to a denial-of-service attack that interferes with the scheduling of time-
related resources provided by the computing system. However, while denial of service
is intended to prevent a user from being able to employ a system function for its
intended purpose, time-related attacks on an embedded system can be intended to alter,
but not stop, the functioning of a system. System examples of such an attack include the
disorientation of a satellite in space or the confusing of a satellite's measurement of the
location of targets it is tracking by forcing some part of the system outside of its
scheduling design parameters. Similarly, environmental hazards or the use of sensor
countermeasures such as flares, smoke, or reflectors can cause embedded systems
employing single sensors such as infrared, laser, or radar to operate in unintended ways.

When sensors are used in combination, algorithms often are used to fuse the sensor
inputs and provide control decisions to the employing systems. The degree of
dependency on a single sensor, the amount of redundancy provided by multiple
sensors, the dominance of sensors within the algorithm, and the discontinuity of
agreement between sensors are but a few of the key facets in the design of fusion
algorithms in embedded systems. It is the potential design flaws in these systems that
we are concerned with when viewing systems from the perspective of systems integrity.

2.3 INFORMATION SYSTEM PROTECTION GOALS

Many researchers and practitioners interested in INFOSEC believe that the field is
concerned with three overlapping protection goals: confidentiality, integrity, and
availability. From a general review of reference material, we have broadly construed
these individual goals as having the following meanings:

1. Confidentiality denotes the goal of ensuring that information is protected
from improper disclosure.

2. Integrity denotes the goal of ensuring that data has at all times a proper
physical representation, is a proper semantic representation of informa-
tion, and that authorized users and information processing resources
perform correct processing operations on it.

3. Availability denotes the goal of ensuring that information and information
processing resources both remain readily accessible to their authorized us-
ers.

The above integrity goal is complete only with respect to data integrity. It remains
incomplete with respect to systems integrity. We extend it to include ensuring that the
services and resources composing the processing system are impenetrable to
unauthorized users. This extension provides for a more complete categorization of
integrity goals, since there is no other category for the protection of information
processing resources from unauthorized use, the theft of service problem. It is
recognized that this extension represents an overlap of integrity with availability.
Embedded systems require one further extension to denote the goal of consistent and
correct performance of the system within its external environment.

2.4 INTEGRITY GOALS

Using the goal previously denoted for integrity and the extensions we propose, we
reinterpret the general integrity, goal into the following specific goals in what we believe
to be the order of increasing difficulty to achieve. None of these goals can be achieved
with absolute certainty; some will respond to mechanisms known to provide some
degree of assurance and all may require additional risk reduction techniques.

2.4.1 Preventing Unauthorized Users From Making Modifications

This goal addresses both data and system resources. Unauthorized use includes the
improper access to the system, its resources and data. Unauthorized modification
includes changes to the system, its resources, and changes to the user or system data
originally stored including addition or deletion of such data. With respect to user data,
this goal is the opposite of the confidentiality requirement: confidentiality places
restrictions on information flow out of the stored data, whereas in this goal, integrity
places restrictions on information flow into the stored data.

2.4.2 Maintaining Internal and External Consistency

This goal addresses both data and systems. It addresses self-consistency of
interdependent data and consistency of data with the real-world environment that the
data represents. Replicated and distributed data in a distributed computing system add
new complexity to maintaining internal consistency. Fulfilling a requirement for
periodic comparison of the internal data with the real-world environment it represents
would help to satisfy both the data and systems aspects of this integrity goal. The
accuracy of correspondence may require a tolerance that accounts for data input lags or
for real-world lags, but such a tolerance must not allow incremental attacks in smaller
segments than the tolerated range. Embedded systems that must rely only on their
sensors to gain knowledge of the external environment require additional specifications
to enable them to internally interpret the externally sensed data in terms of the
correctness of their systems behavior in the external world.

It is the addition of overall systems semantics that allows the embedded system to
understand the consistency of external data with respect to systems actions.

1. As an example of internal data consistency, a file containing a monthly
summary of transactions must be consistent with the transaction records
themselves.

2. As an example of external data consistency, inventory records in an ac-
counting system must accurately reflect the inventory of merchandise on
hand. This correspondence may require controls on the external items as
well as controls on the data representing them, e.g., data entry controls.
The accuracy of correspondence may require a tolerance that accounts for
data input lags or for inventory in shipment, but not actually received.

3. As an example of systems integrity and its relationship to external consist-
ency, an increasing temperature at a cooling system sensor may be the re-
sult of a fault or an attack on the sensor (result: overlooking of the space)
or a failure of a cooling system component, e.g., freon leak (result: over-
heating of the space). In both cases, the automated thermostat (embedded
system) could be perceived as having an integrity failure unless it could
properly interpret the sensed information in the context of the thermostat's
interaction with the rest of the system, and either provide an alert of the ex-
ternal attack or failure, or provide a controlling action to counter the attack
or overcome the failure. The essential requirement is that in order to have
the system maintain a consistency of performance with its external environ-
ment, it must provided with an internal means to interpret and flexibility
to adapt to the external environment.

2.4.3 Preventing Authorized Users From Making Improper Modifications

The final goal of integrity is the most abstract, and usually involves risk reduction
methods or procedures rather than absolute checks on the part of the system.
Preventing improper modifications may involve requirements that ethical principles not
be violated; for example, an employee may be authorized to transfer funds to specific
company accounts, but should not make fraudulent or arbitrary transfers. It is, in fact,
impossible to provide absolute ``integrity'' in this sense, so various mechanisms are
usually provided to minimize the risk of this type of integrity violation occurring.

2.5 CONCEPTUAL CONSTRAINTS IMPORTANT TO INTEGRITY

There are three conceptual constraints that are important to the discussion of
integrity. The first conceptual constraint has to do with the active entities of a system.
We use the term agents to denote users and their surrogates. Here, we relate one of the
dictionary definitions [Webster 1988] of integrity, adherence to a code of behavior, to
actions of systems and their active agents. The second conceptual constraint has to do
with the passive entities or objects of a system. Objects as used here are more general
than the storage objects as used in the TCSEC. We relate the states of the system and its
objects to a second of Webster's definitions of integrity, wholeness. We show that the
constraint relationships between active agents and passive entities are interdependent.
We contend that the essence of integrity is in the specification of constraints and
execution adherence of the active and passive entities to the specification as the active
agent transforms the passive entity. Without specifications, one cannot judge the

integrity of an active or passive entity. The third system conceptual constraint deals with
the treatment of integrity when there can be no absolute assurance of maintaining
integrity. We relate integrity to a fundamental aspect of protection, a strategy of risk
reduction. These conceptual constraints, placed in the context of data integrity and
systems integrity and the previous discussions on integrity goals, provide the
framework for the rest of the paper.

2.5.1 Adherence to a Code of Behavior

Adherence to a code of behavior focuses on the constraints of the active agents under
examination. It is important to recognize that agents exist at different layers of
abstraction, e.g., the user, the processor, the memory management unit. Thus, the focus
on the active agents is to ensure that their actions are sanctioned or constrained so that
they cannot exceed established bounds. Any action outside of these bounds, if
attempted, must be prevented or detected prior to having a corrupting effect. Further,
humans, as active agents, are held accountable for their actions and held liable to
sanctions should such actions have a corrupting effect. One set of applied constraints are
derived from the expected states of the system or data objects involved in the actions.
Thus, the expected behaviors of the system's active agents are conditionally constrained
by the results expected in the system's or data object's states. These behavioral
constraints may be statically or dynamically conditioned.

For example, consider a processor (an active agent) stepping through an application
program (where procedural actions are conditioned or constrained) and arriving at the
conditional instruction where the range (a conditional constraint) of a data item is
checked. If the program is written with integrity in mind and the data item is ``out of
range,'' the forward progress of the processor through the applications program is halted
and an error handling program is called to allow the processor to dispatch the error.
Further progress in the application program is resumed when the error handling
program returns control of the processor back to the application program.

A second set of applied constraints are derived from the temporal domain. These
may be thought of as event constraints. Here, the active agent must perform an action or
set of actions within a specified bound of time. The actions may be sequenced or
concurrent, they may be performance constrained by rates (i.e., actions per unit of time),
activity time (e.g., start & stop), elapsed time (e.g., start + 2hrs), and by discrete time
(e.g., complete by 1:05 p.m.)

Without a set of specified constraints, there is no ``code of behavior'' to which the
active agent must adhere and, thus, the resultant states of data acted upon are
unpredictable and potentially corrupt.

2.5.2 Wholeness

Wholeness has both the sense of unimpaired condition (i.e., soundness) and being
complete and undivided (i.e., completeness) [Webster 1988]. This aspect of integrity
focuses on the incorruptibility of the objects under examination. It is important to
recognize that objects exist a different layers of abstraction, e.g., bits, words, segments,
packets, messages, programs. Thus, the focus of protection for an object is to ensure that
it can only be accessed, operated on, or entered in specified ways and that it otherwise
cannot be penetrated and its internals modified or destroyed. The constraints applied
are those derived from the expected actions of the system's active agents. There are also
constraints derived from the temporal domain. Thus, the expected states of the system or
data objects are constrained by the expected actions of the system's active agents.

For example, consider the updating of a relational database with one logical update
transaction concurrently competing with another logical update transaction for a portion
of the set of data items in the database. The expected actions for each update are based
on the constraining concepts of atomicity, i.e., that the actions of a logical transaction
shall be complete and that they shall transform each involved individual data item from
one unimpaired state to a new unimpaired state, or that they shall have the effect of not
carrying out the update at all; servility i.e., the consecutive ordering of all actions in the
logical transaction schedule; and mutual exclusion, i.e., exclusive access to a given data
item for the purpose of completing the actions of the logical transaction. The use of
mechanisms such as dependency ordering, locking, logging, and the two-phase commit
protocol enable the actions of the two transactions to complete leaving the database in a
complete and consistent state.

2.5.3 Risk Reduction

Integrity is constrained by the inability to assure absoluteness. The potential results
of actions of an adversarial attack, or the results of the integrity failure of a human or
system component place the entire system at risk of corrupted behavior. This risk could
include complete system includes relatively assured capabilities provided by protection
mechanisms plus measures to reduce the exposure of human, system component, and
data to loss of integrity should be pursued. Such a risk reduction strategy could include
the following:

a) Containment to construct ``firewalls'' to minimize exposures and opportuni-
ties to both authorized and unauthorized individuals, e.g., minimizing, sep-
arating, and rotating data, minimizing privileges of individuals, separat-
ing responsibilities, and rotating individuals.

b) Monitors to actively observe or oversee human and system actions, to con-
trol the progress of the actions, log the actions for later review, and/or
alert other authorities of inappropriate action.

c) Sanctions to apply a higher risk (e.g., fines, loss of job, loss of professional
license, prison sentence) to the individual as compared to the potential
gain from attempting, conducting, or completing an unauthorized act.

d) Fault tolerance via redundancy, e.g., databases to preserve data or proces-
sors to preserve continued operation in an acknowledged environment of
faults. Contingency or backup operational sites are another form of redun-
dancy. Note: layered protection, or protection in depth, is a form of redun-
dancy to reduce dependency on the impenetrability of a single protection
perimeter.

e) Insurance to replace the objects or their value should they be lost or dam-
aged, e.g., fire insurance, theft insurance, and liability insurance.

(Figure 1. Not available for electronic version.)

Figure 1. Integrity Framework

3 INTEGRITY PRINCIPLES

``There is a large body of principles from among which those pertinent to any
application environment can be selected for incorporation into specific policy
statements. There is a need to identify as many as possible of those principles as might
be of sufficiently general benefit to warrant their inclusion in a list of such principles
from which the formulators of policy can select, cafeteria-style, those appropriate to their
needs'' [Courtney 1989].

In this section we discuss important underlying principles that can be used in the
design of integrity policies and their supporting or implementing mechanisms. These
principles involve not only those that we believe are fundamental to integrity, but also
those which underlie risk reduction with respect to integrity. These principles were
developed from a review of various written material on the topic of integrity, from our
framework formulated in the previous section, and by an investigation of existing
mechanisms deemed to be important to preserving and promoting integrity.

3.1 IDENTITY

The principle of identity is fundamental to integrity in that it defines ``sameness in all
that constitutes the objective reality of a thing: oneness; and is the distinguishing
character of a thing: individuality'' [Webster 1988]. Identity allows one to distinguish
and name or designate an entity. It is through identity that relationships are attributed
and named. It is through identity that functions are distinguished and named.

Identification of users, programs, objects, and resources includes both their
classification, i.e., their membership in classes of entities that will be treated in the same
or similar manner, and their individuation, i.e., their uniqueness that will allow the
individual entities to be addressed separately. It is through the process of identity that
one can establish the specification of wholeness and a specification of behavior.

All protected systems requiring authorization and accountability of individuals
depend on the unique identification of an individual human user. User identities need to
be protected from being assumed by others. User identities need to be authenticated to
confirm that the claimed identity has been validated by a specific protocol executed
between the system and the unique user. Further, to ensure traceability throughout the
system, the individual identity must be maintained for its entire period of activity in the
system.

Identity, through the use of conventions for naming, attributing, labelling,
abstracting, typing, and mapping, can provide for separation and control of access to
entities. Objects created within the system may require additional attribution to expand
the dimensional scope of their identity to meet specific system objectives such as
confidentiality, proof of origin, quality, or timeliness.

Another fundamental dimension of both subject and object identity is the
conveyance of identity attributes via the relationships of inheritance or replication.
Inheritance relationships include part-whole, parent-child, and type instantiation.
Attributes of interest include privileges conveyed by users to other users or to surrogate
subjects (processes acting on behalf of users), and authenticity of origin conveyed to
object copies. This aspect of identity is important to most identity-based policies for
access control, especially with respect to the propagation, review, and revocation of
privileges or object copies.

3.2 CONSTRAINTS

The principle of constraints is fundamental to integrity. A constraint denotes the state
of an active agent being checked, restricted, or compelled to perform some action. This is
central to the conceptual constraint of adherence to a code of behavior-or to what others
have termed ``expected behavior.'' Constraints establish the bounds of (integrity)
actions. When viewed from the context of objects, constraints are the transformation
restrictions or limitations that apply in transforming an object from an initial state to a
new specified (constrained) state. Constraints establish the bounds of (integrity) states.

3.3 OBLIGATION

The binding, constraining, or commitment of an individual or an active agent to a
course of action denotes the principle of obligation. Obligation is another fundamental
principle of integrity. It is reflected in the terms duty (required tasks, conduct, service,
and functions that constitute what one must do and the manner in which it shall be
done) and responsibility (being answerable for what one does). The bound course of

action, or constraint set, is generally interpreted as always being required or mandatory
and not releasable until the course of action comes to a natural conclusion or specified
condition. However, the sense of obligation is lost should the individual or active agent
become corrupted, i.e., the binding is broken rather than released. In this sense, an active
agent within a system, once initiated, is bound to proceed in its specified actions until it
reaches a natural or specified termination point or until the state of the system reaches a
failure or corruption point that drives the active agent away from the course of action to
which it is bound. This failure or corruption point could be the result of an individual
yielding to the temptation to perform an unauthorized action either alone or in collusion
with others. It also could be the result of faulty contact with the external environment
(e.g., undetected input error at a sensor), loss of support in the internal environment
(e.g., hardware failure), contact with corrupted objects (e.g., previously undetected
erroneous states), or contact with another corrupted active agent (e.g., improper
versioning in the runtime library).

There is also a temporal dimension to the course of action to which an active agent
becomes bound. This dimension binds sequencing, sets deadlines, and establishes
bounds of performance for the active agent. Obligation is then thought of in terms of
initiation or completion timing, e.g., eventually starting or completing, beginning or
finishing within an elapsed time, initiating or ending at a specified clock time, initiating
or completing in time for a new course of action to begin, or completing a specified
number of action cycles in a specified time. System designers, especially those involved
in real-time or deadline-driven systems, use the temporal dimension of obligation to
develop time slices for concurrent processes. Significant obligation issues in time slicing
include interprocess communication synchronization and the access of concurrent
processes to shared data.

One example of obligation is the concept of protocols, which are obligatory
conventions or courses of action for external and/or internal active entities to follow in
interacting with one another. Protocols can constrain the states of data or information to
be exchanged, a sequence of actions, or the mutual exclusion or synchronization of
concurrent asynchronous actions sharing resources or data objects.

3.4 ACCOUNTABILITY

Integrity, from the social and moral sense, implies that an individual has an
obligation to fulfill and that the individual is answerable to a higher (legal or moral)
authority who may impose sanctions on the individual who fails to adhere to the
specified code of action. Holding the individual answerable is the principle of
accountability, from which requirements are derived to uniquely identify and
authenticate the individual, to authorize his actions within the system, to establish a

historical track or account of these actions and their effects, and to monitor or audit this
historical account for deviations from the specified code of action. The enforcement
strength of sanctions may impact some individuals more than others; simply a reminder
of what is expected and the consequences of not meeting those expectations may prove
useful in promoting and preserving integrity.

3.5 AUTHORIZATION

One aspect of binding the active entity to a course of action is that of authorization. In
essence, authorization is the right, privilege, or freedom granted by one in authority
upon another individual to act on behalf of the authority. Employing the principle of
authorization provides one means of distinguishing those actions that are allowed from
those which are not. The authority may be the leader of an organization, an
administrator acting on behalf of that leader, or the owner of a particular asset who may
grant another individual access to that asset. The authority may not only grant access to
a particular asset, but may also prescribe a specific set of constrained actions that ensue
from the access authorization. Thus, there is a binding between the individual, the
course of action, and the asset(s) to be acted upon. Attempting to perform outside of
these privilege bounds without additional authority is an integrity violation.

Authorizations may be granted for a particular action or for a period of time;
similarly, authorization may be revoked. Authorized actions may be further constrained
by attributes of the authority, the recipient, and the object to be acted upon. For example,
in many systems, the creator of a data object becomes its owner gaining discretionary
authority to grant access, revoke granted accesses, and restrict modes of access to that
data object. Such access authorization is identity based. However, access to that object
may be constrained by certain of its attributes (identified by labels). These constraints
may reflect an augmenting rules-based access policy that mandatory checking of
corresponding attributes in the individual be accomplished in accordance with specified
rules prior to completing the access authorization. These attributes could include
National Security Classification Markings, other organizational sensitivity hierarchies or
compartmentation, or label attributes related to the quality, e.g., lower quality, ``initial
draft,'' associated with document transcribers vs higher quality, ``final edited draft,''
associated with document editors.

There may be a requirement in certain systems to provide for the dynamic enabling
or overriding of authorizations. Whether or not the conditions for enabling or
override are to be predetermined or left to the judgement of the user, explicit procedures
or specific accountable action to invoke an enabling or bypass mechanism should be
provided.

3.6 LEAST PRIVILEGE

Privileges are legal rights granted to an individual, role, or subject acting on the
behalf of a user that enable the holder of those rights to act in the system within the
bounds of those rights. The question then becomes how to assign the set of system
privileges to the aggregates of functions or duties that correspond to a role of a user
or subject acting on behalf of the user. The principle of least privilege provides the

guidance for such assignment. Essentially, the guidance is that the active entity should
operate using the minimal set of privileges necessary to complete the job. The purpose
of least privilege is to avoid giving an individual the ability to perform unnecessary
(and potentially harmful) actions merely as a side-effect of granting the ability to
perform desired functions. Least privilege provides a rationale for where to install the
separation boundaries that are to be provided by various protection mechanisms.

Least privilege will allow one individual to have different levels of privilege at
different times, depending on the role and/or task being performed. It also can have the
effect of explicitly prohibiting any one individual from performing another individual's
duties. It is a policy matter as to whether additional privileges are ``harmless'' and thus
can be granted anyway. It must be recognized that in some environments and with some
privileges, restricting the privilege because it is nominally unnecessary may
inconvenience the user. However, granting of excess privileges that potentially can be
exploited to circumvent protection, whether for integrity or confidentiality, should be
avoided whenever possible. If excess privileges must be granted, the functions requiring
those privileges should be audited to ensure accountability for execution of those
functions.

It is important that privileges and accesses not persist beyond the time that they are
required for performance of duties. This aspect of least privilege is often referred to as
timely revocation of trust. Revocation of privileges can be a rather complex issue when it
involves a subject currently acting on an object or who has made a copy of the object and
placed it in the subject's own address space.

3.7 SEPARATION

Separation refers to an intervening space established by the act of setting or keeping
something apart, making a distinction between things, or dividing something into
constituent parts. The principle of separation is employed to preserve the wholeness of
objects and a subject's adherence to a code of behavior. It is necessary to prevent objects
from colliding or interfering with one another and to prevent actions of active agents

from interfering or colluding with one another. Further, it is necessary to ensure that
objects and active agents maintain a correspondence to one another so that the actions of
one agent cannot effect the states of objects to which that agent should not have
correspondence, and so that the states of objects cannot affect the actions of agents to
which they should not have correspondence.

One example of separation is the concept of encapsulation, which is the surrounding
of a set of data, resources, or operations by an apparent shield to provide isolation, (e.g.,
isolation from interference or unspecified access). With encapsulation, the protection
perimeter has well-defined (often guarded) entry and exit points (interfaces) for those
entities which have specified access. Encapsulation, when applied in the context of
software engineering, generally incorporates other separation concepts associated with
principles of software design, e.g., modularity and information hiding, and employs the
mechanism of abstract data types found in many modern programming languages.

Other separation concepts include time or spatial multiplexing of shared resources,
naming distinctions via disjunctive set operators (categorical or taxonomic classification,
functional decomposition, hierarchical decomposition), and levels of indirection (virtual
mapping). All these separation concepts can be supported by the incorporation of the
principle of least privilege.

3.8 MONITORING

The ability to achieve an awareness of a condition or situation, to track the status of
an action, or to assist in the regulation of conditions or actions is the essence of the
principle of monitoring. Conceptually, monitoring combines the notion of surveillance
with those of interpretation and response. This ability requires a receiver to have
continuous or discrete access to specified source data through appropriate forms of
sensors. It also requires a specification of the condition, situation, event, or sequence of
events that is to be checked, observed, or regulated, and a specification of the response
that should be provided. This response specification generally includes invocation
linkages to alarms and to a family of handler processes, such as resource or device
handlers and exception or error handling processes. In some cases, monitors will
require more privilege than other subjects within the system.

The principle of monitoring is key to enforcement of constrained actions in that the
actions must be observed, understood, and forced to comply with the imposed
constraints. When the actions are not compliant, either additional system-provided
corrective actions or alarms to request external corrective actions are invoked.

The principle of monitoring is used in mutual exclusion schemes for concurrent
processes sharing data or resources (e.g., Hoare’s Monitors) and in the operation of
interprocess communications of asynchronous processes to provide process
synchronization. Monitoring is the basis for auditing and for intrusion detection. Other
examples employing this principle include range, value, or attribute checking
mechanisms in the operating system, database management systems (DBMS), or in an
applications program; an embedded feedback-loop control system, such as a
thermostat-driven cooling system; and the security ``reference'' monitor in trusted
systems.

3.9 ALARMS

Whenever systems encounter an error or exception condition that might cause the
system to behave incorrectly with respect to the environment (an integrity failure), the
system designer should incorporate the principle of alarms to alert the human operator
or individuals in the external environment to the unmanageable condition. This fact
mandates a careful analysis of not only the internal aspects of system, but also an
analysis of possible influences from the external environment. Further, the designer
must not only consider the alarms, but also their sufficiency.

Alarms must be designed such that they are sufficient to handle all possible alarm
conditions. For example, if a small field on a display is allocated to displaying all alarm
conditions, and only one alarm condition may be displayed at once, a minor alarm (such
as a low-power alarm) may hide a major alarm (such as indication of intrusion). Thus, if
an intruder could artificially generate a low-power condition, he could hide the alarm
indicating an unauthorized access.

Alarm sufficiency is a technical design issue which, if overlooked, can have serious
impact. It must be required that alarms not be able to mask one another. While there
may not be room for all alarm messages to be displayed at once, an indicator of the
distinct alarm conditions must be given so that the user does not mistakenly believe that
an ``alarm present'' indicator refers to a less severe condition than the alarm actually
involved. In general, a single indicator should not group several events under the same
alarm message. The central concepts here are that alarms must always reflect an accurate
indication of the true status of events and alarm messages must always be visible.

3.10 NON-REVERSIBLE ACTIONS

Non-reversible actions can prevent the effect of an action from later being hidden or
undone. Non-reversible actions support the principle of accountability as well as
address a unique set of problems, i.e., emergency revocations or emergency destruction.
Non-reversible actions are in general, simply a type of restriction on privilege. Thus, the
principle can often be implemented using mechanisms intended for granting privileges.
For example, a non-reversible write operation can be provided by giving a user write
access but no other access to an object. Likewise, an emergency destruction operation
can be provided, at least in the abstract, by giving a user ``destroy'' permission but not
``create'' permission on an object.

``Write-once'' media provide one example of the use of this principle. These media
are useful when the integrity concern is that the users not be able to later modify data
they have created. Creation of audit records is another example employing this principle
in which users may be allowed to write data, but then not modify the written data to
prevent users from erasing evidence of their actions. Disposable locks used on shipping
containers (which can only be locked once and cannot be reused) are yet another
example of this principle's use.

3.11 REVERSIBLE ACTIONS

The ability to recognize an erroneous action or condition that would corrupt the
system if actions that depend on the erroneous conditional state were allowed to
continue often establishes the need to back out the erroneous action or ``undo'' the
condition. This is the principle of reversible actions. System designers most often
incorporate this principle at the user interface, e.g., in text editors, where a user may
readily notice keying errors or command errors and reverse them prior to their having a
detrimental and not easily reversible or non-reversible effect on the object state. This
principle is also used to support atomicity in database transaction processing through
the protocol of ``rulebook,'' which undoes the portion of a transaction already
accomplished when the entire transaction cannot be accomplished. Such reversible
actions are key to leaving the database in a complete and unimpaired state.

3.12 REDUNDANCY

Redundancy in computer systems is a risk-reducing principle that involves the
duplication of hardware, software, information, or time to detect the failure of a single
duplicate component and to continue to obtain correct results despite the failure
[Johnson 1989]. Redundant processing is commonly used in fault-tolerance applications.
The same processing is performed by more than one process, and the results are
compared to ensure that they match. The need for redundancy varies depending on the
application. Redundant processing is commonly used in the implementation of critical
systems in which a need for high reliability exists. Examples include multiply redundant
processors in avionics systems, and traditional accounting systems in which auditors

reproduce the results of accountants to verify the correctness of their results. In
situations where a system may be subjected to adverse conditions, such as on the
battlefield or hazardous environment, or in systems which may be subject to an adve-
rsarial attack that is attempting to disable operations controlled by the system,
redundancy may be essential. Thus, it may be desirable to require it for certain systems.

 Hardware redundancy is the most familiar type of redundancy, and involves
duplicating hardware components. Software redundancy involves adding software
beyond what is necessary for basic operation to check that the basic operations being
performed are correct. N-version programming in which different teams provide unique
versions of the same application program vs replicated versions is one example of
software redundancy. The efficacy of software redundancy to support correct operations
remains an open issue. For example, it has been shown that n-version programming
teams tend to have difficulty with the identical hard problems of an application [Knight
1986].

Information redundancy involves duplication of information. Duplicate copies of
information are maintained and/or processed, so that failures can be detected by
comparing the duplicated information. To further assist in detection of failures, the two
copies of information may be represented in different ways, (e.g., parity bits or cyclic
redundancy codes). By exchanging bit positions of individual data bits in a byte or word,
or by complementing the bits of all data, failures such as those that modify a specific bit
position in a byte or word, or which force specific bits to always be zero or one, can be
detected.

Time redundancy involves repeating an operation at several separated points in
time, (e.g., resenting a message that was transmitted with errors). While this approach
will not detect constant, persistent failures that always cause an operation to fail in the
same way, it can often detect intermittent or transient failures that only affect a
subset of the repeated operations.

3.13 MINIMIZATION

Minimization is a risk-reducing principle that supports integrity by containing the
exposure of data or limiting opportunities to violate integrity. It is applicable to the data
that must be changed (variable minimization and the more general case, data
minimization), to the value of information contained in a single location in the system
(target value minimization), to the access time a user has to the system or specific data
(access time minimization), and to the vulnerabilities of scheduling (scheduling
regularity minimization). Each application is discussed in more detail in the
following sections.

3.13.1 Variable Minimization

The ability of a subject to violate integrity is limited to that data to which a subject
has access. Thus, limiting the number of variables which the user is allowed to change
can be used to reduce opportunities for unauthorized modification or manipulation of a
system. This principle of variable minimization is analogous to least privilege. Least
privilege is usually used to describe restrictions on actions a subject is allowed to
perform, while variable minimization involves limiting the number of changeable data
to which a subject has access.

For example, a subject may be authorized to transmit messages via a
communications system, but the messages may be in a fixed format, or limited to a small
number of fixed messages in which the subject can fill in only specific fields. Thus, a
subject may be allowed to say ``fire type X missile on coordinates __, __'' but may not be
allowed to substitute missile type Y for missile type X.

3.13.2 Data Minimization

Variable minimization generalizes to the principle of data minimization, in which the
standardized parts of the message or data are replaced by a much shorter code. Thus
``Fire missile'' might be replaced with the digit ``1'', and ``on coordinates'' might be
eliminated altogether, giving a message of the form

1 X ___ ___

where ___ ___ is replaced by the coordinates. The shortened forms of standardized
messages or phrases are sometimes called brevity codes. When implemented in a
computer system, integrity can be further enhanced by providing menu options or
function keys by which the operator specifies the standardized message, thus reducing
the potential for error in writing the code. On the other hand, as these codes become
shorter, there is an increased likelihood of spurious noise or errors generating an
unintentional valid message.

3.13.3 Target Value Minimization

The threat of attack on a system can be reduced by minimizing target value. This
practice involves minimizing the benefits of attack on a given system, for example, by
avoiding storing valuable data on exposed systems when it can be reasonably retrieved
from a protected site on an as-needed basis. Distributing functionality among subjects is
another means of minimizing target value and, thus, reduces vulnerability. Highly
distributed systems use this approach, in which any one processing element is of little
importance, and the system is sufficiently widely distributed that access to enough
processing elements to have major impact is not feasible.

3.13.4 Access Time Minimization

Access time minimization is a risk-reducing principle that attempts to avoid
prolonging access time to specific data or to the system beyond what is needed to carry
out requisite functionality. Minimizing access time reduces the opportunity for abuse.
Timeouts for inactivity, rotation, and binding of access to ``normal'' or specified working
hours are variations of this approach. This principle can serve distinct integrity
functions, particularly in the case of more analytically oriented users of data.

3.14 ROUTINE VARIATION

It is desirable to avoid scheduling vulnerabilities, in which time-dependent
vulnerabilities can become known, by employing the risk-reducing principle of routine
variation. For example, if audits are scheduled at regular times, a bank employee that is
capable of successfully subverting other controls may know exactly when to abscond
with bank funds allowing sufficient time to cover up the theft or to make a safe getaway.
Similarly, if communications are known to occur at specific times, synchronized with a
master clock, an adversary is enabled to concentrate efforts for attack on the known
periods of activity. The adversary, for instance, could degrade performance of a radio-
based network by jamming the frequencies in use at known transmission times.

3.15 ELIMINATION OF CONCEALMENT

If a system contains structures that allow concealment of integrity-violating devices,
the risk of undetected access is increased. This fact applies not only to physical
concealment (such as places to locate undetected hardware devices), but it applies also
to software concealment. Software concealment includes places such as large, poorly
structured code that allows Trojan horse or virus code to be inserted without detection,
and features of elaborate and complex command languages where ``back door''
command sequences may be hidden without significant risk of accidental or routine
discovery during normal usage of the system.

The ``debug'' feature used by the Internet Worm in 1988 is an example of software
concealment. ``Debug'' was part of a large electronic-mail program called ``sendmail.''
The code for the ``sendmail'' program was so large and its command structure so
complex that few people other than the implementer of the ``debug'' feature knew of its
existence. The feature was further concealed by the very limited documentation of the
``sendmail'' program in proportion to its complexity, and by the fact that its command
language and syntax were so obscure that guessing the undocumented command was
unlikely.

The problem concerning this feature was that the large, poorly structured code of
``sendmail'' made it easy to hide a security vulnerability from systems security
personnel performing a systematic search for security vulnerabilities, while not hiding it
sufficiently from those who could exploit it. If the proportion of man-hours spent
searching for security vulnerabilities during a security evaluation is small in proportion
to the number of man-hours spent searching for vulnerabilities in order to exploit them,
code whose complexity aids the concealment of security vulnerabilities is more likely to
result in an actual breach of security.

3.16 ACCESS DETERRENCE

The risk-reducing principle of access deterrence is employed in mechanisms that
discourage rather than prevent access. These mechanisms are useful in certain
situations. For example, a system that makes an unpleasant and distracting noise when
an unauthorized access attempt is first detected may reduce the ability of an adversary
to concentrate on attacking the system. When used on a battery-powered system in the
field, such a device could also serve to disable the system by discharging the system's
batteries if the deterrent device is not deactivated within a short period of time.

A conventional intrusion alarm siren is an example of an access deterrent. They are a
deterrent rather than an absolute mechanism. Devices which produce unpleasant by-
products while in operation function similarly, since they discourage tampering with
devices during or after operation. An example is the water-activated battery used in
some disposable meteorological equipment in the early 1970s. An unpleasant smelling
material was left inside of the battery compartment, thus discouraging persons who
found the discarded equipment from trying to reactivate the radio transmitter by
replacing the battery. Clearly, use of such mechanisms is limited to unusual conditions.

4 INTEGRITY MECHANISMS

In this section, we examine a wide variety of manual and automated mechanisms
that address various problems related to integrity. Most of these mechanisms, evolving
over the course of many years, remain in use today. Not all of the mechanisms we
examine are implemented in computer systems. These non-automated mechanisms
were included in our study because they give insight into what types of controls need to
be provided and the types of threats which must be countered by automated integrity
mechanisms. Also, since it is impossible to predict what functions can or will be
automated in the future, we felt that it would be more productive to examine integrity
mechanisms in general, rather than to limit our study to currently automated
mechanisms. No single mechanism provides the solution to integrity problems, and
certain mechanisms may not be appropriate for certain systems. Rather, each mechanism
can increase integrity protection for systems that satisfy the assumptions identified in
the respective sections.

The mechanisms have been categorized to show that they serve a relatively small set
of distinct purposes. We use the term policy to describe the higher-level purpose of a
mechanism. In [NCSC 1988], security policy is defined as the set of laws, rules, and
practices that regulates how an organization manages, protects, and distributes sensitive
information. Our usage of the term ``policy'' is intended to be narrower than its
generally accepted usage. We use this term to describe administrative courses of action
which characterize a group of mechanisms in promoting or preserving integrity. The
relationship among mechanisms grouped under a policy is a common, abstract course of
action which addresses one facet of integrity. For example, fault tolerance (discussed in
Section 4.4) is an important aspect of integrity protection for a wide array of
applications, and can be provided by a variety of mechanisms. Table 1 is a summary of
the policies and corresponding mechanisms identified in this chapter.

(TABLE 1 not available for electronic version.)

TABLE 1. Integrity Mechanisms Grouped by Policy and Sub-Policy

4.1 POLICY OF IDENTIFICATION AND AUTHENTICATION

Identification and authentication (I&A) are elements of a supporting policy required
for integrity, just as for confidentiality. In order to enforce access controls it is necessary
to uniquely identify with confidence who is attempting access. Likewise, when new data
is created it is necessary to identify the creator of the data in order to assign any access
control attributes based on the data's origin, such as ownership, hierarchical ``quality''
measures, or categories reflecting specialized knowledge on which the data may be
based.

The prevalent understanding and discourse on I&A deals primarily with what we
have termed ``user I&A.'' However, there are corresponding identification (and
authentication) concerns for other entities, such as devices and objects, that must be
voiced to address this topic in full generality. Since the underlying principles of user
I&A can be applied equally as well to a variety of entities, the traditional view should be
extended to include these entities which have not previously been associated with
I&A. Thus, while we will emphasize user I&A, we are motivated to include a
discussion of I&A for devices and objects as well. Our discussion of this policy is not
meant to be a treatise on I&A mechanisms, but rather to highlight some I&A concerns
with respect to integrity.

4.1.1 Policy of User Identification and Authentication

There exists a wide range of user I&A mechanisms in use today, including:
passwords, biometric devices, behavior analysis, and identification badges. We will
not discuss each of these mechanisms separately, as the purposes of all these
mechanisms are the same: (1) the identity of an individual needs to be established in
order to enforce policies which relate to those individuals, (2) the identification needs
to be established with assurance that the individual is whom he claims to be, and (3) the
activity of the individual needs to be captured for accountability. Our discussion will
instead focus on the general types of mechanisms which are commonly employed and
the issues related to the use of each of these types of mechanisms for user I&A.

In order to be effective, I&A mechanisms must uniquely and unforgeably identify an
individual. Traditionally, user I&A is based on the use of ``something you know,''
``something you are'' (variably, ``something you can do''), or ``something you have.''
Both ``something you know'' and ``something you have'' are limited in effectiveness
by the fact that they are only associated with a person by possession. A person
possesses knowledge or some identifying object, but both of these can be acquired by
someone wishing to pose as that individual. Each approach has advantages and
disadvantages. What distinguishes these two approaches is how effectively each type
of authentication item can be protected.

The principal weakness of ``something you know'' is that it may be duplicated. Not
only is it sometimes very easy to learn something someone else knows, but it may be
possible to guess it. Because ``something you know'' can be readily retained and
reproduced by humans, no special tools, skills, or equipment are generally required to
duplicate this type of authentication item. But ease of duplication is also an advantage
of this type of authentication item because such information tends to be easily
represented to the trusted computing base (TCB) without special equipment. Any
authentication data ultimately must be encoded, in some form, in the TCB's
authentication database; in this sense, a ``copy'' of the information has to be kept by the
TCB in order to be usable in authentication. Since ``something you know'' can usually
be directly represented as a character string, it is easy to store for later use by the TCB.

Although easy to copy, if ``something you know'' is genuinely unique, such as a
unique nonsense word or number, it may be easier to guard than a physical object.
This advantage results from the fact that an item of knowledge normally is fully in the
possession of the person it identifies at all times. Unlike a key, card, or other device,
``something you know'' cannot be stolen while temporarily left sitting on a desk,
cannot accidentally fall out of a pocket, and in many cases cannot be forcefully
acquired unless the person stealing it has a way of verifying at the time that it is correct.

However, poor security practices such as writing one's password down can negate the
advantages of using this technique. ``Something you know'' is also inherently
vulnerable to interception at its point of entry into the system. The ease of duplication
always makes ``something you know'' an imperfect form of authentication, and it is
subject to conscientious protection of information for its effectiveness.

By comparison, the major strength of ``something you have'' lies in its difficulty of
duplication. ``Something you know'' is, literally speaking, an example of ``something
you have,'' so when we speak of ``something you have'' we will by convention mean a
physical object rather than an item of knowledge. While such objects require more
effort to guard from theft, they can be made using special equipment or procedures that
are generally unavailable to the population which poses a threat to the system. The
intent is to make duplication of I&A objects too costly with respect to whatever is to
be gained by falsifying the I&A objects. This fact discourages duplication, though it
does not necessarily prevent duplication by a determined intruder.

The third type of authentication item, ``something you are,'' is much stronger than
the first two. After all, the goal of authentication is to verify ``who you are,'' and
``something you are'' is very closely tied to this goal. But, there are also problems with
this type of authentication. A major obstacle is the difficulty of building cost-effective
peripherals that can obtain a complete enough sample of ``something you are'' to
entirely distinguish one individual from another. Cost is also a factor in identifying
``something you have,'' but the authentication item itself can usually be designed to
simplify identification by the TCB. ``Something you are'' cannot usually be easily
encoded by conventional computer peripherals. It may be relatively easy to build
devices that confirm that someone has some distinguishing features, such as weight or
finger length. However, the cost of peripherals which have the ability to detect
additional detail required to completely distinguish one person from another can
be substantially greater.

Fortunately, not everything about a person is required for an adequately unique
identification. Specific methods, such as fingerprinting or retinal scans, may be used
to reduce costs in comparison to a total examination of all of a person's physical
attributes. Yet, even these methods incur greater costs than the use of a password,
which requires no additional hardware at all. Furthermore, such methods are not
guaranteed to be infallible: identical twins, for instance, would not be distinguishable
by DNA readers, and might not be distinguishable by any other specific tests of
physical characteristics. In the hypothetical case of entirely identical twins, the two
individuals might be solely distinguished by things in the ``something you know''
category.

It may sometimes be useful to distinguish between ``something you are'' and
``something you can do.'' Examples include an individual's speech, writing, or keystroke
dynamics, which might uniquely authenticate a particular individual's identity.
Obviously the strength of this approach is directly related to how well such a
mechanism can distinguish ``unique'' and ``authentic'' behavior. For instance, the
mechanism might not be able to distinguish between two very rapid typists, or perhaps
a speech-recognition mechanism could be ``spoofed'' by a high fidelity recording of
someone's voice.

Other refinements of particular authentication methods may strengthen the
mechanism while increasing costs in terms of additional performance or management
overhead. For example, the requirement for one-time passwords places some
additional constraints on the user and the mechanism, but is very effective in dealing
with the problem of reuse or ``playback'' of authentication information.
Nonetheless, simple mechanisms (e.g., a ``standard'' password mechanism) can be both
effective and efficient in specific applications and environments.

Thus, not only are there cost and feasibility tradeoffs between the various
authentication methods, but several methods may be required to give adequate
certainty of authentication, which at the most theoretical level is always subject to
some amount of error. A common concern for all I&A mechanisms is the degree of
assurance which must be assumed regarding the facts that the mechanism is actually
communicating with a bona fide user and that such communication has been neither
intercepted nor tampered with. Additional measures such as physically securing
communication lines and complementing an I&A mechanism with trusted path features
can substantially increase the assurance of authentication.

The need for user I&A is essential for integrity when the permitted operations or
accesses vary among different individuals. Without identification, it is not possible to
know which user a given subject represents, and thus it is not possible to determine
access rights. Without authentication, it is not possible to verify that a user's stated
identification accurately reflects the user's identity. I&A policies and mechanisms play
a fundamental part in supporting most other protection policies. As a result, the
protection and integrity of the I&A mechanism(s) and related data is essential.

4.1.2 Policy of Originating Device Identification

One possible extension to I&A is the need for originating device identification.
Particularly in the battlefield, where it must be expected that a certain number of
devices will be captured, it is essential that it be possible to uniquely identify each
device in order to distinguish captured (and thus untrusted) devices from those
which are still trusted. Terminal units may be assigned to specific groups in the field,

and since the risk of capture of these devices must be considered, unique hardwired
identification of each device is desirable. This identification mechanism can be
protected against tampering and substitution, for example, by a mechanism that
destroys the terminal unit or one of the unit's critical subcomponents (such as
encryption keys) if the unit is physically accessed.

The authentication issue is different for device vs human-user identification. A
problem with human-user identification is that many of the identification mechanisms
are based on something the user knows (an identifier string) which must be further
authenticated. In the case of the device with a hardwired identifier, the identifier is
part of ``what the device is,'' thus reducing the authentication burden: the concern then
focuses on what user is accessing the known device.

4.1.2.1 Mechanism of Device Identification

In traditional systems, devices are uniquely identified primarily to allow them to be
separately addressed. In the commercial environment, the need for unique
identification has become an issue due to the desire to limit software use to specifically
licensed machines. The use of ``serial number'' read-only memories (ROMs) or similar
mechanisms is being increasingly used for this purpose.

Where security is concerned, device identification must be unforgeable to the extent
possible to prevent a user from easily changing a device to masquerade as another. In
a hostile environment, a conventional identifier ROM is not sufficient, since it may be
easily replaced. Any identification mechanism that leaves signal and control lines
exposed to tampering may allow the enemy to easily modify the identifier, depending
on the architecture of the device interface. For example, if data lines beyond the
device select logic are exposed, the identifier could be modified by simply grounding
or cutting the data lines. If the system bus is exposed and the device addressing
mechanism is known, identifier modification can be accomplished with greater
difficulty by building a clip-on device that monitors address lines for the ROM
address and then drives the bus data lines to the desired identifier values.

For this reason, it is recommended that the data path between the identifier ROM
and the hardware that accesses it be protected from access. This path could be protected
by locating the ROM on the same integrated circuit (IC) as the related processor circuits,
and by isolating the processor from the external bus while the ROM is being read.
Similar protections must be used between the time the identifier is read and when it is
transmitted to the device or subject requesting the device identifier. At some point in
this path, the protection mechanism must shift from physical protection to encryption
and related mechanisms because the data will be exposed to modification during
transmission to the remote site.

These identification mechanisms, however, do not preclude attack from a
sophisticated adversary; they only make it more difficult for the enemy soldier on the
battlefield to successfully infiltrate such a system. It is still possible to construct work-
alike hardware that allows the device identifier to be changed, and such hardware
may be used by the enemy to falsify this identifier as part of an attack.

Because of this vulnerability, device identification should be used to restrict or
disable captured devices, rather than to grant privileges or to serve as user identi-
fication. Furthermore, it is undesirable to give specific access-control meanings to
specific identifier values, other than to distinguish the devices from one another.
Despite its limitations, proper design of device identification is essential to giving an
increased level of control over devices distributed in the field.

4.1.3 Policy of Object Identification and Authentication

For our purposes, objects are simply passive entities within a system-our use of
particular terminology should not be construed to suggest a particular
implementation of objects (e.g., object-oriented systems). The topic of object I&A
may require a broadening of one's traditional focus on user I&A, and the realization
that the principles underlying user I&A may be applied equally to objects. An object's
identity can include its class (e.g., classification, type) and a unique name used to
reference a particular instance of the class. Similarly, active entities, besides having
unique names, can be grouped via clearance level or group membership, thereby
forming classes which are meaningful in relation to policy enforcement. An object's
class is specified via attributes associated with the object instances, although all
attributes of an object need not apply specifically to policy enforcement. Policy can
specify proper activity in terms of an (active or passive) entity's name, attributes, or
some combination thereof.

In some cases, such principles have been applied in existing mechanisms which
enforce policy in relation to objects, but are simply not recognized as I&A principles,
perhaps due to an over specialization of the term. For instance, one purpose of user
identification is to provide a means to capture the activity of users. However, user
activity is usually defined in terms of actions on specific objects within the system. Thus,
an object's identity must be established with certainty in order to accurately capture the
activity of a user. Alternate naming facilities, such as aliases or symbolic links, must
not hinder the system's ability to resolve and record the unique identity of the
physical object. Here we see that the same principle (unique identification) must be
applied equally to users and to objects, otherwise unauthorized actions might go
undetected.

An object's identity provides a means for both the system and users to bind a logical
entity with its physical (i.e., machine) representation. As such, an object's identity can
also be expanded by attaching contextual attributes (e.g., owner, type, authenticity),
allowing the system to achieve a greater degree of functionality in regard to its
interactions with objects. In particular, object identity and its associated attributes
enable the system to enforce various policies related to specific operations on instances
of objects. Policy decisions are based either directly or indirectly (through associated
attributes) on an object's identity. The correspondence of a logical entity to its

physical representation can make policy enforcement difficult, or may create
opportunities to otherwise circumvent policies. This correspondence can be expressed
as the unification of a logical entity with its physical representation; in general, this
unification must be maintained during all operations on an object, throughout its
period of existence on the system.

Problems associated with the unification of information with data result from two
causes: physical or logical dispersion of object identity. Physical dispersion exists
because there may be multiple ways to physically access the logical entity specified by a
unique system identifier. If physical resources can be directly accessed, then protection
mechanisms based on object identification can be circumvented. If temporary objects
can be accessed, such as a buffer holding the results of a database query or a scratch
file on disk, the integrity of other (permanent) objects may be compromised. Also,
objects within a system will exist in different forms (i.e., on disk, in cache, in memory)
over their lifetime within the system. If all forms of an object are not sufficiently
protected, the integrity of the object can eventually be compromised. For instance, a file
may be protected by the operating system while in memory, but a channel device
which contains maliciously written software may modify the file while transferring it
to or from the disk.

While physical dispersion concerns an internal (to the system) binding of an object to
an identity, logical dispersion is associated with the binding of an external ``infor-
mation unit'' to a system object or set of objects. It is important that an object's identity
and associated attributes reflect the external expectation of what that object represents.
For instance, if duplicate, sensitive information is entered into two different text files on
a system, then that information is necessarily represented internally by two different
object identities. If the two files are marked with different integrity attributes, then
policy decisions may be inconsistent with respect to identical units of information.
One of the text files may be marked as Sales and the other as Development, or perhaps
they are ``owned'' by different subjects. While, the system may perform flawlessly in
enforcing an integrity policy based on these labels or ownership, different actions may
be specified, allowed, or disallowed for each object due to the difference in their
attribute specifications. Thus, drastically different versions may emerge over time.

The scope of this problem increases when one realizes that the information in one
internal object can be copied to other objects. Even if the attributes associated with the
(original) object are faithfully transferred to all objects which contain all or part of the
original information, each of those ``new'' objects must have different internal iden-
tities. While the overall intent of some integrity policy may be to control access to a
``specific instance of information,'' the system may have dispersed internal identities
which contain that information. Because a system's enforcement of policy is usually on a
per object basis, it may be impossible for that system to enforce (integrity) policies
which address the information ``identity,'' rather than internal object identities.

An example exhibiting the dispersion problem is that of updating identical,
distributed databases. The databases represent a single, logical ``instance of
information,'' yet at any given moment the actual contents of the databases may be
different. If the overall system depends on the cooperation and interaction of
components, some of which have different values for the same logical entity, the results
are unpredictable. The integrity of such a system's operations may be suspect.

The problems associated with dispersion are compounded when one considers that
for integrity concerns, the attributes associated with an identity might not need to be
identical for all versions of an object, but there may in fact need to be some variation of
the original attributes for each copy. Thus, we suspect that a mechanism to address the
dispersion problem will have some of the properties of a ``version control'' or
configuration management system which binds related system objects to a single system
identity.

Another concern associated with object I&A is that the true identity of an object may
be known only by considering the totality of that object's representation on the system
(e.g., its name and location). The presence of variable search paths for executable
objects may result in the unintended invocation of improper programs. On some
systems, executables can be referenced by a sequential search for the program through
an arbitrary series of file system locations (i.e., directories). This series is arbitrary in the
sense that the specific locations and the order in which they occur in the search path
are not fixed properties of the system, but may be specified and varied on a subject to
subject basis. If two programs have the same name but reside in different directories, the
actual program executed through invoking that name would depend on which
directory occurred earlier in a subject's search path.

The presence of different forms of referencing an object generally reflects the
desire for flexibility in systems. However, such flexibility can result in some uncer-
tainty about which objects are actually referenced by the invocation of identical
commands in different environments. It would seem that the definite resolution of
object identity must be guaranteed by the system in order to maintain a high assurance
of integrity. This implies that some method of absolute referencing be provided by the
system, and used exclusively in operations which are integrity-sensitive. Absolute
referencing should extend to interactive commands, dynamic references of applications,
and system-internal references. However, for universal absolute referencing to be
practical, the referencing mechanism must be flexible. The explicit-path method
described above may prove too cumbersome; however, flexible alternatives
already exist (e.g., capabilities), although these alternatives may have drawbacks of
their own.

Object ``authentication'' may often simply mean that its source of origination is
genuine the user who created the object has been authenticated. It may be suggested
then that object authentication is then equivalent in some sense to user I&A. However,
there are some additional constraints which are assumed in such a proposition. In
general, nothing associated with an object throughout its lifetime on the system is static.

Its identity can be changed by renaming or making a copy. Attributes associated with
an object can be modified and then possibly changed back to the original. For many if
not most objects, the contents of that object will change over time. The authenticity
of an object created and maintained by a particular user cannot be ascertained if other
users are able to modify the object's name, attributes, or contents. Also, an object may
be copied and illegitimately presented as original. As such, the authenticity of an object
is highly dependent upon a system's capabilities and the proper administration of
controls over that object.

In general, object authentication can be addressed to varying degrees, depending on
the capabilities and features offered by a particular system. Some systems, such as net-
work and other communications systems, may provide strong authentication of objects
through their protocol structures. The primary motivation is to be able to recognize
``valid'' frames and packets, discarding those with errors or possibly rerouting others to
their proper address. However, the protocol structure provides a convenient location
to insert more rigorous object authentication mechanisms, in general [ISO 1990]. Other
systems such as stand-alone, personal computers, may offer no intrinsic object
authentication mechanisms. Objects on such systems may be ``authenticated by
recognition,'' but no formal protection features are offered.

Some systems may provide general authentication mechanisms such as digital
signatures, notarization, or encryption, which are discussed below. While general
authentication mechanisms provide the capability to protect specific objects on
demand, general authentication of all objects within a system using these methods
may entail a prohibitive administrative overhead. The topic of practical object
authentication is one requiring more research to arrive at general solutions.

4.1.3.1 Mechanism of Configuration Management

Configuration management (CM) can be thought of as a mechanism which
incorporates aspects involving both identification and authentication of objects within a
system. In its most widely accepted usage, CM deals with controlling the construction
of complex objects, extending to both identifying the components of an object and how
those components are combined. Configuration management may incorporate features
of access control for greater measures of protection, but can provide unique protection
services independently of access control. Protection provided by CM mechanisms can
extend to an arbitrary level over each object considered a component of a more complex
object.

Configuration management mechanisms are currently in wide use in the software
development industry today, aiding in the control of production software. A more
general adaptation of CM techniques in the control of related objects seems plausible.
It should be noted that an application (i.e., a program or set of programs) will often
provide a significant amount of control over objects within its particular domain.
Therefore, a more generalized CM mechanism focused on object integrity would need
to extend CM controls over inter-application objects and possibly related, system-
level objects.

4.1.3.2 Mechanism of Version Control

A mechanism which is usually integrated into CM systems is that of version control.
Version control allows distinct versions of an object to be identified and associated with
independent attributes in a well-defined manner. For instance, three different
versions of a software package could be marked as ``invalid,'' ``distribution,'' and
``next release,'' respectively. Each version can be handled differently with respect to a
particular policy. Version control can include such features as the destruction of ``inva-
lid'' objects or distribution of sanitized versions.

4.1.3.3 Mechanism of Notarization

In the context of distributed systems, it has been suggested that the originator of an
object should be responsible for assuring its confidentiality, while the recipient of an
object should be responsible for assuring its integrity [Jueneman 1989]. From a
detection oriented viewpoint, these are valid points. However, when emphasizing the
prevention of policy violations, we find that the converse situation must also apply:
the recipient of an object must also protect an object's confidentiality, while the
originator must provide some protection of an object's integrity. In particular, the
authenticity of an object must, in part, be the responsibility of the originator. The
originator must be responsible for the proper creation, maintenance, and
administration of the object up until the time of its transmission to the recipient.
Similarly, the system on which the object resides must provide the proper mechanisms
to support the originator's protection of the object.

Given that an object is beyond the ability of the recipient to protect before it is
received, the recipient may be forced to assume that the originator intended for that
particular object to be sent, and that the object had been appropriately protected while
it resided on the originator's system. This assumption can be unfounded for several
reasons: (1) it is possible that the originator's intentions are malicious, (2) the
authentication mechanism may have been applied improperly, (3) the authentication
mechanism itself may contain faults, and (4) it may have been possible to intercept and
replay authentic traffic. In this respect, some authentication measures taken by the
recipient often only verify that the originator of an object is genuine.

One technique which can strengthen recipient's assurance in the authenticity of an
object is the generalized mechanism of notarization. With this mechanism, an interme-
diary entity intercedes between the originator and recipient during an object transfer, to
establish and certify the authenticity of the object. The intermediary, or notary,
``seals'' the object that bears the signature and/or seal of the originator. In its normal
usage, notarization primarily serves to verify the authenticity of originator of an
object, rather than the object itself. A generalized extension of this technique seems
particularly well suited for automated systems. In automated systems, the originator of
an object transfer might simply supply a notary entity with the object, while the notary

entity would perform the actual application of the authentication mechanism. This
technique has the property of separating the ability to both originate and authenticate
an object, which would perhaps be desirable for certain systems or applications.
Furthermore, a notary entity might supplement the authentication measures taken by
the originator, thereby reducing the required degree of trust for both entities.

4.1.3.4 Mechanism of Time Stamps

One measure which can be used either independently or as a strengthening feature
of other mechanisms (e.g., notarization) is the mechanism of time stamps. Time stamps
can be provided by a system automatically as an integral part of the system's object-
transfer mechanism(s). Time stamps can be used to enforce ``time of use'' dependencies,
and can provide added assurance that an object received by an entity is still valid. For
instance, in a real-time system, stale data from sensors could be detected and
discarded by a recipient processor if the time differential was too great for tolerances.
Similarly, there exists multiuser systems today which limit the valid ``time of use''
period for sensitive objects via the use of time stamps [Steiner 1988]. Automated
features such as time stamps do not completely solve all aspects of the problems
associated with object authentication, although they can provide extra protection. The
main advantages of time stamps are that they can be made efficient, transparent, and
uncircumventable.

4.1.3.5 Mechanism of Encryption

In general, the mechanism of encryption effectively seals the information within an
object inside an additional (logical) container. Used primarily to provide confidentiality,
general encryption can be used to ensure the detection of integrity violations and to
otherwise hinder integrity attacks. Encryption is not absolute protection, as the
sealing process may only be as safe as the encryption key. Also, encryption of an object
does not in and of itself prevent damage to its integrity. However, encryption does
provide an additional level of protection which must be circumvented in order to violate
protection policies, or to succeed at making violations without detection. A distinct
advantage of encryption is its flexibility of use its ability to be used either as blanket
protection or ``on demand,'' and its applicability to a wide array of object types. There
is a great deal of existing literature on the various uses and methods of employing
encryption which will not be summarized in this paper for the purpose of brevity.
However, specific uses of encryption which are the most relevant to the issues of
integrity are discussed below.

4.1.3.6 Mechanism of Digital Signatures

The mechanism of digital signatures is intended to produce the same (desired) effect
as a real signature: an unforgeable proof of authenticity. In [Rivest 1978] the
authors describe a specific implementation of digital signatures in a public key
cryptosystem. Every user (and TCB) has a unique, secret decryption procedure D that
corresponds to a publicly available encryption procedure E. As an example scenario,

suppose that A and B (also known as Alice and Bob) are two users of a public key
cryptosystem. Their encryption and decryption procedures can be distinguished
with subscripts: EA,DA,EB,DB. If Bob wants to send Alice a ``signed'' message M in
a public key cryptosystem, he first computes his ``signature'' S for the message M using
DB:

 S = DB(M)

He then encrypts S using EA (for privacy), and sends the result EA(S) to Alice. He
need not send M as well; it can be computed from S.

Alice first decrypts the ciphertext with DA to obtain S. She knows who the
presumed sender of the signature is (in this case, Bob); this can be given if necessary in
plain text attached to S. She then extracts the message with the encryption procedure of
the sender, in this case EB (available on the public file):

 M = EB(S)

She now possesses a message-signature pair (M, S) with properties similar to those of a
signed paper document. Bob cannot later deny having sent Alice this message, since
no one else could have created S = DB(M).

4.2 POLICY OF AUTHORIZED ACTIONS

Users assigned to particular tasks may have certain actions for which they are
uniquely authorized. For example, only the approval authority may be authorized to
give the order to launch an attack on the enemy. In computer systems, these
authorized actions are often called privileges. Authorized actions can be either
unconditional or conditional. Unconditional authorization immediately authorizes an
action, although the action may not take place until some time in the future.
Conditional authorization authorizes an action, but only if certain conditions hold.

When looking at the topic of authorized actions, we are considering ways in which
access may be controlled, without implying any underlying strategy (such as
strategies for deterrence). There may be situations in which the need for dynamic
modification of authorized actions is required. Such modifications are usually
performed by an authorized individual such as a security officer, or by a trusted
software component. However, there may be cases in which such modifications must
be allowed to be made by normally unauthorized individuals under controlled
conditions. It is necessary that emergency situations be considered in the design of
authorization systems, since survival of the users may require that overrides be possible.

An authorized actions policy specifies which actions a subject is allowed to perform,
rather than controls on which data the subject is allowed to access. We examine several
mechanisms that can be used to specify authorized actions under the policy of
separation of duties. We begin, however, by addressing the policy of conditional
authorization.

4.2.1 Policy of Conditional Authorization

If we consider the fully prohibited (disabled) and fully permitted (enabled)
conditions to be the two extremes of unconditional authorization, there are
intermediate states between these two where conditional authorization can also be
important. We will examine two conditional authorization mechanisms: conditional
enabling and value checks. Conditional enabling authorizes an action only when
certain conditioning events exist, and value checks are used to restrict actions based
on authorized values.

4.2.1.1 Mechanism of Conditional Enabling

Conditional enabling disables the ability to perform a given action (such as to fire a
weapon) when the action has not been authorized. Attempting to perform the action
will produce no effect. However, if conditionally enabled, an authorization override or
bypass mechanism is provided. If the user of the disabled device actuates some
arming control, for example, the previously disabled function will now operate. It is
expected (and enforced by disciplinary measures as appropriate) that the operator of the
device will not bypass the required authorization except in situations that necessitate
it. The mechanism serves primarily to prevent accidental actions from being initiated.
The requirement that the operator take an explicit action to override the normal
requirement for authorization serves to ensure that the action was intentional, and
places greater reliance on the operator's contribution to the integrity of the system.

An example of this mechanism that is directly related to our topic is that of
recently-designed ``fly-by-wire'' aircraft [Seecof 1989]. These aircraft have computer
controlled restrictions on which actions the pilot may perform; the computer determines
which actions might be damaging to the aircraft if carried out, such as excessively
abrupt changes in direction or excessive engine speed. If the pilot attempts to operate
a control outside the calculated safe range, the system prevents the control from being
moved into that position. However, if the pilot pushes the control with unusual force,
the system will allow him to move it beyond the restricted position. This override
allows the pilot to exceed calculated safety limits in emergency situations, such as
collision evasion. Considerable controversy has surrounded designs of
commercial aircraft that have failed to incorporate such overrides, including
suggestions by aircraft engineers at competing manufacturers that such aircraft will
not perform adequately in emergency situations [Outposts 1989].

For this reason, it seems advisable that support for conditional overrides of this
type be available in safety critical systems where the operators are considered suffi-
ciently skilled, or where absence of the override may result in dangers that the operator
could otherwise prevent. In designing such an override, individual analysis of the
design is necessary to determine whether and to what extent the override should be
provided. It is not possible to give rules that will cover all cases adequately without
examination of individual cases. Simply omitting to provide support for such
overrides, or prohibiting them in standards, appears inadvisable.

4.2.1.2 Mechanism of Value Checks

Value checks are a weak form of type enforcement, and historically are the
predecessor to abstract data types and strong typing discussed in Sections 4.3.1.1 and
4.3.1.2. There are several related types of checking techniques that we have grouped
under the heading of value checks: discrete value checks, range checks, and data
attribute checks.

With discrete value checks, data may be permitted to have only certain values out
of a wider possible set, or may be restricted not to have particular values. For example,
target coordinates may be restricted such that artillery could not be directed to fire
upon friendly forces.

Range checks verify that data is within a certain range of values. For example,
memory parameters passed from a memory management process to the kernel must
be checked to be certain that they fall within certain bounds. Range checks
supported by the machine architecture have generally been limited to those required for
correct operation of the instruction set, such as checks for arithmetic overflows, and
those required in support of the memory protection subsystem, such as checks to ensure
that addresses are not out of range.

Data attribute checks, such as verifying that data is in a particular numeric format,
have been present for several decades in the instruction sets of commercial machines.
These elementary checks usually involve only verifying that the data is in a format
suitable for correct processing by the machine's defined set of operations, e.g., that
a packed decimal number consists only of the hexadecimal representation of the digits
0-9 followed by a valid sign digit (A-F) [Struble 1975]. More complex attribute checking
is possible through programming language constructs. For example, values may be
required to be numeric or alphabetic, numbers may be required to be even or
multiples of some other value, and strings may be required to be of a certain length.

Checking mechanisms beyond these have been implemented either at the
programming language level, or as a programming practice in applications
development. Subscript range checking, for example, has been a debug feature
provided by some compilers even when the language involved does not incorporate
strong type enforcement, simply because it helped to detect a commonly occurring
error. However, such checks were often considered debug-only features, and were
usually removed for efficiency reasons in production software.

Newer languages retain these checking mechanisms, but extend them by providing
for exception handlers: when an error is detected, a means is provided for the
program to retain control and handle the error appropriately. Similar error-handling
mechanisms existed in much earlier systems, but generally were a feature of the
processor architecture which might on occasion be extended into the operating system
interface where it was accessible to the user. They were not well integrated into most
programming languages.

4.2.2 Policy of Separation of Duties

Many integrity violations result when a subject fails to perform expected duties in
the appropriate way. A violation can involve willful inappropriate actions (e.g., con-
spiracy, coercion, and duping), failure to perform duties, or performance of duties in
inadequate ways. To promote prevention and detection of these types of violations,
separation of duties may be employed. In this type of policy, different subjects are
given distinct but interrelated tasks, such that failure of one subject to perform as
required will be detectable by another. To avoid circumvention of this mechanism, any
one subject is explicitly prohibited from performing another subject's duties.

This policy is based partly on the expectation that not all subjects involved in
interrelated tasks will attempt integrity violations at the same time (i.e., collaborate),
and that those who do not attempt integrity violations will detect the failure of their
counterparts. People may be less likely to attempt integrity violations if they know
that their actions will be visible to others who are performing related duties. Likewise,
people may be more likely to notice and recognize situations that are anomalous and to
report them. Depending on how duties are partitioned, separation of duties may
altogether prevent a single individual from violating integrity. For example, some
tasks may be partitioned among several subjects such that, while none of the subjects
can observe their counterparts' actions, the task cannot be completed without a
contribution from all the subjects.

It must be noted that the preventive effect may not always be provided by a simple
separation of duties. For example, if one individual is allowed to issue checks but not
update inventory records, and another is allowed to update inventory records but not
issue checks, the first individual may still issue unauthorized checks. The fact that
the checks are unauthorized will be detected by auditors who find that the payments
did not result in items being added to the inventory, so the fear of being detected is
the principal deterrent. The example could be enhanced to include the preventive
effect if the duty of issuing checks was further divided to limit a first person to pro-
viding a proposed table of check addresses and amounts, and a second person to
authorizing the AIS to print the checks and controlling the check stock.

It should also be noted that restricting access may prevent an individual from
filling in for another individual in an emergency situation, such as a situation in which
the individual originally assigned a given task is injured on the battlefield. Thus,
separation of duties also increases the extent to which individuals become critical
components in the overall functioning of a system. If other persons are prevented from
substituting for the missing person, the system may be disabled more easily by the
failure of an individual to perform their assigned duty.

One of the stronger points of separation of duties is that, in certain systems, it is
possible to be reasonably certain that not all subjects will fail. For example, it may be
expected that an intruder will not be able to find ways to violate the integrity of all
subjects among which duties are separated, and thus that the remaining subjects will
detect the attempted integrity violations of the other subjects. On the other hand, if this
expectation is incorrect, and the intruder finds a way to cause ``collaboration''
between all the subjects involved, this policy will not detect or prevent the violation.

In the case of machine processes, the preventive effect can be achieved when it is
possible to partition the functions of the different processes such that a single errant
process cannot in itself cause a harmful result to occur. However, the psychological
element involving the fear of detection is absent in machine processes. Since they
merely perform their operations as programmed, without detailed evaluation of risks,
machine processes will not be deterred a priori from committing integrity violations. In
the same way, they will only detect violations for which they have been programmed
to check, and are not likely to recognize many forms of suspicious behavior by their
counterparts. A machine process which is involved in separation of duties with a
human counterpart is particularly vulnerable, since the person may find it easy to
``outwit'' the machine's checks, especially if the person comes to understand the
machine's checking algorithms.

The enforcement of separation of duties can be either static or dynamic. The
simplest approach is static separation, where the system administrator in charge of
maintaining access controls is responsible for understanding the way the rules achieve
separation of duties and for making appropriate assignments. This approach is limited
in functionality because it is often necessary or desirable to reassign people to duties
dynamically. An alternative approach is for the system to keep track dynamically of
the people who have executed the various actions in the task sequence, and to ensure,
for any particular execution, that proper separation has occurred. However, there are
several hard problems to solve in order to implement dynamic separation of duties, such
as encoding valid sequences and separately tracking each execution of a particular
sequence.

4.2.2.1 Mechanism of Rotation of Duties

In some tasks, it is likely that a person performing the task may discover, through
random events, ways to compromise the integrity of the system. If such a person is
corrupt or corruptible, the probability that the person can cause an integrity violation
increases the longer he is assigned to the same duty. The probability that the viola-
tion will remain undetected is also increased in certain instances. To address these
vulnerabilities, rotation of duties is used, in which a person is assigned to a given task
for only a limited amount of time before being replaced by another person.

For example, a person may discover exploitable ``loop-holes'' in a system and may
decide to use them to violate the integrity of the system. If the person is rotated out of
a given position before such loopholes are discovered, some threat to integrity may be
reduced. Note, however, that communication between current and former occupants
of the vulnerable role may defeat the protection provided by this mechanism. Rotation
may also give the user a broader understanding of the operation of the system, giving
more insight into how to circumvent integrity.

Additional features of rotation of duty involve limiting the damage one individual
can do and increasing the likelihood of detection. If a given individual is seeking to
bring about violations of integrity, rotation can accomplish two things. First, if there is
only one task in which an individual has discovered a way to perform an access in
violation of policy, rotation will reduce that individual's exposure to the vulnerable
task. Second, rotation may enable identification of the individual involved in an
integrity violation: if an audit shows that a problem exists only while a given
individual is assigned to a particular task, this provides evidence that individual may
be associated with the problem in some way. If the individual has discovered ways to
violate integrity in multiple duties, an audit may indicate that the problem ``follows''
the individual as rotation occurs, again providing evidence that the individual in
question may be involved in the violation.

Rotation of duty also addresses an integrity threat that does not involve willful
malicious action: the tendency for errors to increase when a person performs a
monotonous task repeatedly. In this case, rotation of duty reduces the amount of
time the repeated, monotonous task must be performed by a given person. In general,
electronic systems do not have an analogous property, although mechanical systems
may (i.e., rotation to distribute mechanical wear among exchangeable parts).

This mechanism implies separation of duties, since in order for duties to be rotated
among different users, the duties must first be partitioned among these users. Thus, it
is necessary that a mechanism be provided to enforce separation of duties. For rotation
of duties, this enforcement must be extended to allow orderly, policy driven rotation of
assignments to specific duties. The rotation may occur at a specific point in time, or in
response to requests by an administrator.

Rotation of duties can also be used to effectively rotate data. For example, if three
accountants are maintaining the accounts of three different companies, the
accountants could be rotated among the different companies periodically. The duty of
accounting would not change (and thus no additional training would be necessary),
but the data being maintained would be rotated among the accountants, reducing the
probability that an authorized user would make improper modifications.

4.2.2.2 Mechanism of Supervisory Control

In some cases, authorization may be delegated to subjects in controlled ways.
Supervisory control exists when a subject in a supervisory role is required to authorize
specific actions to be carried out by a subordinate subject as certain conditions arise. In
general, the authorization would apply to exactly one occurrence of an action so that
overall control of the activity remains with the supervising subject. Supervisory control
may involve either requiring an individual to give final approval to an action being ini-
tiated by another individual, or requiring an individual to give final approval only to
actions that meet certain constraints (such as those that have particularly severe conse-
quences). Normal activity outside the scope of these constraints would not require the
approval of the supervisor.

This mechanism provides for delegation of less integrity critical tasks to less trusted
individuals, with only the integrity critical portions being dependent on the
supervisor. One example is check cashing authority at grocery checkout stands. A
checkout clerk can initiate the check cashing procedure, but must receive final
approval from a supervisor for the actual transaction to take place.

Supervisory control is often a complexity-control mechanism. The delegation of
action is often a tradeoff, since it might be desirable under ideal circumstances for all
actions to be performed by the most trusted individual, but doing so would not be
possible due to the number of individual actions that must be decided upon and
undertaken. This fact highlights one vulnerability associated with supervisory
control if the critical conditions which require a response occur with high frequency, the
supervisor may spend an unacceptable portion of time issuing authorizations to
subordinates to deal with the occurrences. Therefore, it may be inadvisable to rely on
supervisory control if such a high frequency situation is likely to occur, unless this
contingency has been planned for (e.g., through the granting of blanket authorizations).

4.2.2.3 Mechanism of N-Person Control

N-person control (where N is a number, typically 2) requires more than one subject
to request or participate in the same action in order for the action to be successful. An
example of this mechanism is a system for commanding missile launches in which two
physically separated controls must be operated by two people simultaneously. The
rationale is that n people are less likely to spuriously decide to initiate an action than
would one person.

This is a unique mechanism, which is not provided in most existing computer
systems. It is roughly analogous in its underlying purpose to the preventive aspect of
separation of duties, in that it serves to require that multiple persons cooperate to bring
about a controlled action. The difference is that in N-person control, separate
individuals are performing the same duty (as opposed to different duties in separation

of duties) to bring about a single action. N person control often also requires that these
persons perform actions simultaneously; by comparison, separation of duties usually
does not involve this requirement for simultaneity. As with may other mechanisms, N-
person control can be strengthened by incorporating other security features, such as
time tokens, trusted path, and physical security.

4.2.2.4 Mechanism of Process Sequencing

Certain duties may be required to be performed in a certain order; this process
sequencing can serve at least two purposes. First, this mechanism can ensure that all
steps necessary for a multi-step procedure are followed in the proper order. Second, if
the sequence is known only by current authorized users, it may be more difficult for
an adversary to successfully discover the sequence and violate the integrity of the
system. Process sequencing especially discourages trial-and-error attacks, if the
sequence is long and an improper sequence makes it necessary for the user to start over
at the beginning. However, it can also make it more difficult for an authorized user to
succeed at the required steps, if the procedure or environment is such that errors by
users are likely.

4.3 POLICY OF SEPARATION OF RESOURCES

In addition to separating duties among different persons or processes, access to
resources can also be separated. In this policy, the resources to which subjects have
access are partitioned so that a given subject has access only to a subset of the
resources available. More precisely, a given subject and the tools (e.g., programs,
system utilities, system applications) available to that subject are allowed access only
to specific resources. An example is disk quota enforcement, in which the amount of
disk space that each subject may use is limited to a fraction of the total space available
in the system. This policy can overlap with the separation of duties policy discussed
previously if the resources that are controlled limit the duties that each subject can
perform. However, separation of resources can also have other effects, such as lim-
iting the extent of damage to otherwise homogeneous resources that can be caused
by a given errant subject.

Similar principles apply to separation of resources as apply to separation of duties.
As with separation of duty, a means of partitioning is required, but the partitioning sep-
arates resources rather than duties and tools. To accomplish this end, the TCB should
provide a means of enforcing an appropriate partitioning of resources such that they
are accessible only to persons or processes in specific roles.

To a certain extent, such mechanisms are already provided in existing systems.
Identity based access control allows such discretionary partitioning, e.g., owner has
discretion to grant access. In some cases such partitioning is ``mandatory.'' For
example, in many systems, only the owner of a file is allowed to perform certain
operations on it, such as deleting it or changing its access attributes. Permission to
change access permissions, identified in [Bishop 1979] as ``grant'' permissions
(sometimes inexactly called ``control'' permissions), is ``mandatory'' on such a system
because it is not possible for anyone to modify this permission to allow someone else

other than the owner of the file to change the access permissions. Thus, the presence
of this access control is mandated by the implementation of the system security policy,
and cannot be overridden at the discretion of the users. The word ``mandatory'' in this
sense has a different meaning than the word ``Mandatory'' in ``Mandatory Access
Controls,'' since the latter usage refers to a specific type of access control whose
mandatory nature is based on rules that must be followed. Adding further
mandatory or rule based restrictions specified on a per user basis could strengthen most
identity based, discretionary partitioned systems.

However, there is an additional aspect to separation of resources. If there is also a
restriction in terms of which programs (or classes of programs) are allowed access to
resources, it is possible to limit the damage that can result from self propagating
programs such as computer viruses. By separating resources, the principle of least
privilege can be applied to limit the damage a virus could cause if one did get into the
system. Such viruses normally act as Trojan horses: while performing operations on
some authorized resource, they also covertly perform operations on resources
(executable program files) which they should not be permitted to modify. If a program
whose purpose is to display mail files, for example, is prevented from accessing
other program files because they are a type of resource not appropriate or necessary
for the mail reader program to access, the mail reader program is prevented from
covertly modifying the other program files while it is performing its normal, authorized
function. This topic will be discussed further under encapsulation mechanisms. The
remainder of this chapter discusses separation of resources mechanisms grouped under
three policies: address space separation, encapsulation, and access control.

4.3.1 Policy of Address Separation

Throughout the history of computer architectures a variety of file and memory
protection schemes have been developed to prevent a process from incorrectly
accessing a resource or overwriting memory that is not allocated to the process.
Overwrite prevention is necessary since such memory often contains another process's
code or data, or a portion of the operating system, control tables, or device registers for
the system. We describe two address separation mechanisms that can be used to
prevent unauthorized access or overwrites: separation of name spaces and descriptors.

4.3.1.1 Mechanism of Separation of Name Spaces

Fundamental to the separation of name spaces is the principle that an object that
cannot be named also cannot be addressed. This mechanism, separate from, although
often confused with memory protection, is both an elementary way to think about
protection and a basis for file protection. In this approach, users are provided distinct
separate naming or ``catalog'' spaces, such that the same name (e.g., home directory)
refers to separate, non-overlapping objects when used by each user. The result is that
each user's processes are unable to name or access the other's named objects, the
object's addresses are resolved to a different locational meaning. This was the primary
file system protection scheme of M.I.T's Compatible Time Sharing System [Saltzer
1977]. This mechanism can be applied to protecting arbitrary named resources where
each user or process has its own distinct name space in which it may use resource

names without having to consider name usage by other processes. The principle
drawback of this mechanism is that it precludes sharing, at least via named objects. It
does not provide for ``controlled sharing'' at all. So other mechanisms have been
developed to address protection (e.g., access control lists) and sharing of
information (e.g., working directories).

4.3.1.2 Mechanism of Descriptors

The approach to memory protection that is the basis of ``segmented'' memory
systems is based on special hardware implementing a descriptor table. In the
descriptor based approach, all memory references by a processor are mapped through
this special piece of hardware. The descriptor table controls exactly which parts of
memory are accessible.

The entries in the descriptor table are called descriptors and describe the location and
size of memory segments. A descriptor contains two components: a ``base'' value and a
``bound'' value. The base is the lowest numbered memory address a program may use,
and the bound is the number of memory locations beyond the base that may be used.
A program controlling the processor has full access to everything in the base bound
ranges located in the descriptor table.

The descriptor based approach to memory protection operates on the assumption
that the address (name) of an object in memory is equivalent to the object itself, and
thus that controlling the ability to use the address to reference the object provides
control over the object. The advantages and disadvantages of descriptors are a
direct result of this assumption. Because objects in primary memory are always
referenced via an addressing mechanism, into which the descriptor based protection
mechanism is interposed, it is straightforward to show that this protection mechanism
serves as a reference monitor for objects that are in memory.

But not all objects reside in memory; they also reside on other devices, some of
which (such as data on conventional 9-track tapes) are not referenced by addresses at
the hardware level. Thus, it is necessary to impose control on access to the device, then
implement additional protection mechanisms in software to control access to the data
stored on the device. This approach complicates verification and is less consistent with
the requirement that the reference monitor be ``small enough to be subject to analysis
and tests.'' Furthermore, some memory locations, such as the CPU registers, are not
protected in this way at all; the approach taken is to view these memory locations as
being part of the subject, and thus the protection mechanism seeks to prevent data from
being moved into these memory locations.

Granularity of segments is another problem in such systems. Since segment sizes
vary, locating available space in memory is not trivial. As a result, fixed sized
segments (commonly called pages) are used in most modern computer architectures.
Fixed sized segments, pages, also eliminate the need for the ``bound'' component of the
descriptor since all pages have the same bound.

One other disadvantage of descriptors is that the attributes of objects protected by
descriptor based mechanisms are not attached to the objects in a consistent and direct
way. Objects of similar attributes are grouped together where they can be
protected under the same descriptor; if values are copied out of them into registers or
into other objects, the attributes of the original object do not automatically follow the
information. This is one of the principal reasons for the information flow restrictions
that result from the traditional mandatory access control disclosure rules: the rules are
intended to keep data with similar attributes together. However, there are no
theoretical impediments that preclude direct attachment. Rather, this is an
implementation issue and reflects the industry's past success and failure.

There are also advantages to the descriptor based approach. It is usually very
efficient to implement in hardware, and access rights can be associated with each
segment via the descriptors. The block sizes which descriptors reference (the
granularity) are chosen specifically for this reason. These block sizes enable the
otherwise time consuming arithmetic for computing permissions to be performed by
partitioning the binary addresses into groups of digits, and routing these groups of
digits through the hardware which processes the addresses to determine access
permissions. Thus, the mechanism tends to be time and hardware efficient.

There is also the advantage of experience. Because this approach has been
extensively used for several decades, it is well understood and well developed. It has
strongly influenced the current view of computer security, as well as the basic machine
architecture most people associate with a computer. Thus, existing concepts fit well
into this approach.

4.3.2 Policy of Encapsulation

Encapsulation mechanisms provide important design paradigms for producing
systems with improved integrity properties. These mechanisms provide support for the
type of system architecture requirements of the TCSEC (for B3 level features and
assurance) which state, ``the TCB shall incorporate significant use of layering,
abstraction, and data hiding'' [DOD 1985, p 38].

Underlying these design paradigms is the goal that software and hardware
components should be structured so that the interface between components is clean
and well defined, and that exposed means of input, output, and control, besides those
defined in the interface, do not exist. This approach serves to limit complexity of the
module interfaces, as well as complexity of the software as a whole, since it restricts
the means by which the modules of the system can interact. It also serves to impose an
architectural discipline on those implementing the system, when provided as a
mechanism rather than simply as a design paradigm, because it prevents the
implementers from circumventing the defined interfaces in the course of

implementation. Four encapsulation mechanisms are discussed below: abstract data
types, strong typing, domains, and actors. Given that certain resources within the
system are encapsulated, we describe three well-defined interface mechanisms that can
be used to manipulate those encapsulated resources: message passing, data movement
primitives, and gates.

4.3.2.1 Mechanism of Abstract Data Types

Abstract data types precisely define the semantics of data and control the operations
that may be performed on them. This mechanism defines a type to be a particular set
of data values and a particular set of operations to perform on those data. Thus, just as
there is usually a set of ``integers'' in a programming language, it is possible to
define a ``degree'' type which consists of the degrees of a circle, and operations
performed on values of this type. More complex types are also possible, and may be
used to represent physical objects (robot arms, mechanical equipment, etc.) for
programming purposes. Abstract data typing is a fundamental mechanism of modern
high order languages.

Abstract data types have substantially improved the ability to support integrity.
Their use addresses two of the three goals of integrity cited earlier. They allow the
programmer to define data to be of types more directly derived from the things the
data actually represents; thus, there is less of a ``semantic gap'' between what the
programmer is trying to represent and what form the data actually takes. This supports
the goal of ``maintaining internal and external consistency of data.'' With respect to
the other two goals, the mechanism, as it is normally used, does not prevent
unauthorized users from modifying the data; however, it can aid in preventing
authorized users from modifying the data in inappropriate ways, as long as they
correctly use the defined operations for that type.

The existence of support for abstract data types does not in itself completely ensure
that subjects cannot modify data in inappropriate ways since many implementations
allow programmers to override the data typing mechanisms. The adherence to the
defined data types in such implementations is the responsibility of the programmer.

4.3.2.2 Mechanism of Strong Typing

The mechanism of strong typing is simply the strong enforcement of abstract data
types. The permitted values and operations of an abstract data type are strongly
enforced by the compiler or hardware, and cannot be circumvented. Programmers are
prevented from taking convenient and possibly efficient shortcuts in their
manipulations of the data, but integrity is enhanced by constraining programmers to

manipulate data in well-defined ways. Users are prevented from accidentally
misusing the data type, especially when they may not understand the details of a
particular data type. Even though an object's representation might be compatible
with operations not associated with that data type, such operations will not be
permitted.

For example, consider a data type whose value represents the angular position of a
gun turret. Suppose that the angular position is represented using the computer's
hardware representation for a floating point number. Even though this floating point
number is allowed by the hardware to take on a very wide range of values, the use of
strong typing could prevent the normal floating point operations from being
performed on the number. Instead, a new set of operations would be provided for
modifying the number, which constrains the resulting values to meet acceptable
conditions.

Thus, the ``+'' operation might be defined to prevent a programmer from
incrementing the turret position such that its angle was greater than 360 degrees. This
``+'' operation might also prevent a programmer from adding more than a certain
increment to the position in a single operation (to meet physical restrictions of the
machinery that rotated the turret). This ``+'' operation might also be defined to have the
side effect of repositioning the turret to the new value whenever the number was
changed, so that the number always accurately reflected the position of the turret.
Strong typing would prevent the use the machine's general floating point ``+'' operation
instead of the operation defined for the turret-position data type. Thus, it would not be
possible to either (1) set the turret position to invalid values, or (2) set the number so it
did not accurately reflect the turret position. This form of strong typing is currently
available in the Ada programming language and in other high order languages.

Strong typing is not limited to programming languages. For example, the
mechanism may be used to prevent a pilot of a particular type of aircraft from
commanding it to perform an operation for which it was not designed and that would
be damaging to the aircraft's structure. The values to which aircraft controls may be set
can be considered analogous to the set of values that data of a particular type may take
on. The specific set of allowed operations the pilot may perform on the controls may
be considered to be analogous to the allowed set of operations on a conventional data
type. Ultimately, the control values and operations may actually be represented via
conventional programming language data types in, for example, a ``fly by wire''
system; in such a case, maintaining a consistent mapping between the programming
language type restrictions and the user interface (aircraft controls) in a way acceptable to
the pilot may prove a significant design challenge.

4.3.2.3 Mechanism of Domains

A domain is a mechanism that uses the principle of separation to protect resources.
A domain achieves protection by encapsulating its resources in what is effectively a
distinct address space. As described in [Boebert 1990] there are at least two ways to
implement domains: as common subsets of subjects, and as equivalence classes of
subjects.

Domains are typically implemented as common subsets of subjects. The Multics
ring mechanism is a prototypical example of domains implemented in this way. The
common subsets are the rings. The address space of each subject is subdivided into a
series of rings. The rings have a hierarchical relationship, with the innermost ring being
the one with highest privilege. Program code executing in a given ring can access data
objects in rings of lower privilege, and they can make procedure calls to rings of higher
privilege. Due to the hierarchical relationship among domains in this type of
implementation, domains of higher privilege are protected from domains of lower
privilege. Protection between mutually suspicious domains cannot be supported.

The LOCK architecture [Boebert 1990] overcomes this problem by implementing
domains as equivalence classes of subjects. Each instance of a domain is encapsulated
in a single subject, and has its own separate address map to achieve isolation. Shared
objects, which are mapped into the address space of two or more subjects, provide the
means of data flow between domains. Control flow requires a special mechanism
because each subject has its own execution point which stays within the address space
of that subject. The mechanism used in LOCK is intersubject signalling.

4.3.2.4 Mechanism of Actors

Programs can be designed to function as actors, in which the user of the program
issues a request to access an object in a particular way, and the program then acts on the
request itself. In such a case, the program interprets the request and then performs the
appropriate action, rather than having the action performed upon the object by an
outside entity. An example would be an integer object, which would be given the
request ``add 12 to yourself.''

Actors are partly software structuring mechanisms; they help to organize software
into distinct, autonomous parts. But they also reduce the risk of ``tampering'' with
the object by direct modification, since the only way to cause the object to be modified
is by requesting the program (actor) to do so itself. The program can be designed to
check requests before acting upon them, and to reject improper requests. Actors are
distinct from mechanisms in which the user process ``executes'' a segment of code
directly in order to manipulate an object (i.e., a subroutine written to manipulate data
of a particular type). The underlying implementation distinctions between the two,
however, can be subtle.

The actor concept explicitly requires that individual modules are responsible for
performing operations on their data themselves, in response to requests from modules
that use them. This is, in part, simply a way of looking at the software. Thus, the same
operation ``a+b'' can be thought of as meaning either ``fetch values a and b and perform
the `+' operation on them, giving a new value,'' or ``request a to add b to itself and
return the new value to the requester.'' The conceptual difference is that the ``fetch
and perform'' concept implies that the user directly accesses the values, whereas the
latter (actor) concept implies that the values are autonomous entities that respond to
user requests.

The actor concept suggests that the values are less passive and thus more able to be
self-protecting-a view that can promote a better software architecture from the security
standpoint. It is, however, necessary to continue to keep efficiency and the architecture
of the underlying hardware in mind when using actors. The higher level of abstraction
should not hide the importance of efficient architectural design from the implementer,
particularly in embedded systems that often have real-time requirements.

4.3.2.5 Mechanism of Message Passing

Message-passing mechanisms, when used as the primary interface between
modules, restricts improper access because requests and data are communicated to the
software components through a well-defined mechanism that is distinct from the
mechanisms used to modify data directly (e.g., direct writes to memory, input/output
operations, branches into module code entry points). Trusted Mach [Branstad 1989] is
an example of the use of such a mechanism. Message passing mechanisms, of course,
use some of these direct-access mechanisms internally. But the message passing
paradigm controls the accesses into components implementing the message passing
mechanism, rather than distributing the use of the direct-access mechanisms
throughout the system.

As a result, implementation of a reference monitor, as well as verification of the
mechanisms used to affect intermodule communication, are simplified by this
localization of function. The operations that are directly available to the users (the
individual software modules wishing to communicate with one another) do not
provide a way to directly modify or execute portions of other modules; they only
provide the ability to enqueue well-defined requests to pass data to the other modules.
These requests can then be checked for correctness, and the modifications can be
carried out at a time when the receiving module is ready to handle the data (i.e.,
when the receiving module executes a receive message operation).

4.3.2.6 Mechanism of the Data Movement Primitives

Most computer architectures equate a data object with the place in which it is stored.
A computer architecture which uses the data movement primitives ``get'' and ``put''
distinguishes a data object from its storage location [Roskos 1984]; it is possible for a
process to move (get) an object out of its storage location (which may be shared
among many processes) into a private location, perform operations on the object, and

then move (put) it back into the shared location. During the time the object is in the
private location, it cannot be accessed by other processes, and references to the shared
location generate an exception condition. This architecture addresses integrity
problems in which multiple processes share data and try to update it at the same time,
causing the data object to be corrupted.

4.3.2.7 Mechanism of Gates

When an object (or simply a subroutine) is able to be executed directly by a process,
it is possible to limit the actions that the process can perform through the use of gates.
A gate is a controlled entry point into a segment of code. It is not possible to enter the
code except through the gate, and restrictions can be enforced regarding which
processes are allowed to enter the gate (e.g., only code with certain privileges, or
acting on behalf of a given user, may be allowed to do so).

Gates can also be used to cause a transition in privilege. For example, a process
which enters a routine via a gate may gain extra access permissions or allowed
operations, since use of the gate ensures that a specific segment of code will be
executed while these permissions are granted. The code can be verified to ensure that
it does not allow unauthorized use of the privileges. Upon exit from the routine, the
extra privileges are revoked by the system.

4.3.3 Policy of Access Control

The policy of access control restricts which data a subject is allowed to access. An
evolving framework for addressing restrictions on access control is given in
[Abrams 1990]. Restrictions can be either identity-based or rule-based. Identity-based
controls are typically associated with discretionary security policies, and rule-based
controls are typically associated with mandatory security policies. In identity-based
mechanisms, the identity of a subject or object must match the identity specified in the
particular access control mechanism. We discuss three mechanisms that can be used
to enforce identity-based access restrictions: capabilities, access control lists, and
access control triples. In rule-based mechanisms, one or more attributes of a subject
must obey specified rules in relation to corresponding attributes of an object that the
subject desires to access. We discuss labels as a mechanism to enforce rule-based
access restrictions.

4.3.3.1 Mechanism of Capabilities

Capabilities provide a general and flexible approach to access control. A capability
is a specially protected object (or value representing it) that contains the name of the
object to which it refers along with a specific set of attributes or permissions that specify
what types of access the possessor of the capability is granted. It can be thought of as
an unforgeable ticket, which, when presented, can be taken as incontestable proof that
the presenter is authorized to have the specified access to the object named in the
ticket. Thus, when a subject wants to access an object, the subject simply presents the
appropriate capability and a descriptor is immediately created (giving the subject access
to the object) with no additional permission checks being performed.

The system can invalidate a capability (so that possession of it no longer grants
access), can control whether or not it is possible to give away the capability to another
process, or can limit the number of times a capability may be used to access an object.
Capabilities provide a very powerful and flexible means of controlling access to
resources, and distributing that access to others. This topic is discussed further and
many implementations are identified by Gligor et al. [1987].

4.3.3.2 Mechanism of Access Control Lists

Where capabilities employ a ticket-oriented strategy to access control, access control
lists (ACLs) employ a list-oriented strategy. An access control list contains the names
of subjects that are authorized to access the object to which it refers, as well as specific
permissions that are granted to each authorized subject. Thus, when a subject wants to
access an object, the system searches for an entry for the subject in the appropriate ACL.
If an entry exists, and if the necessary permissions are part of that entry, then a
descriptor is created. The list-oriented strategy requires one more permission check
than the ticket-oriented approach when a subject requests access to an object.

ACLs can be thought of as a somewhat more flexible form of strong typing, although
conceptually they are not as powerful for programming purposes. Their generality
allows one to set access permissions arbitrarily, with the result that someone who does
not fully understand an application might grant a user access to programs and data
which were incompatible. This could result in a program operating upon data it was not
designed to handle, and thus performing incorrectly. This situation is largely an
educational concern for users, but is of importance in the design of programmable
systems.

In a system in which names are considered equivalent to objects, such that
controlling the use of names controls access to the objects they reference, a potential
problem exists if multiple names are allowed to reference the same object. These names
essentially provide alternate ``paths'' to the same object, and if ACLs are associated
with the names rather than with the object itself, a user's access may be restricted if a
reference is made via one name, but not restricted if the reference is made via another
name. The result is that a given user's access permissions for an object can be
inconsistent when viewed in terms of these multiple names. Multiple names can be a
problem in database systems where multiple ``views'' are provided with access
controls associated with the views. It is also a problem in conventional operating
systems when access permissions are associated with directories and multiple ``links''
(directory references) exist to the same file. This problem exists regardless of
whether the access permissions for files are stored in the directories, or whether access
controls on the directories themselves are used to control access to the objects
referenced within the directories.

4.3.3.3 Mechanism of Access Control Triples

An access control triple is a list-oriented mechanism that was conceptually
introduced by Clark and Wilson [1987] to address access control requirements more
commonly associated with ``commercial'' computer systems rather than ``military''
systems. It provides a finer granularity of access control than normally associated
with capabilities and ACLs by specifying required linkage for a user, program, and
object along with specific permissions that are granted to the user while invoking the
particular program on the given object. The triples of the Clark-Wilson model
essentially define allowed type operations, and the Integrity Verification Procedures
(IVPs) of the Clark-Wilson model define a set of permitted values for data of a given
type.

A principal distinction, then, is the association of a given set of triples with a given
object, rather than with a given type. This distinction is necessary because the Clark-
Wilson triples control which users may perform operations on a given object, and thus
provide one of the components of integrity enforcement which is missing from
conventional strong typing. To do this form of integrity enforcement, access permissions
must be specified on a per object basis, not simply by type. ACLs also specify these
access permissions, but they do not include a detailed specification of what operations
may be performed: they simply indicate whether or not each predefined set of
operations is permitted.

Access control triples are not a strict generalization of strong typing because the per
object specification property of Clark-Wilson does not allow triples to implement
conventional strong typing. A single triple describes an existing object, not a set of
objects that will be created in the future. A similar argument can be made with regard
to ACLs. That is, ACLs permit a wide variety of operations to be performed without
explicitly specifying them as long as they do not violate the access restrictions imposed
by the ACLs.

4.3.3.4 Mechanism of Labels

It is also possible to associate one or more labels with each user, process, and
resource to implement rule-based access control. Processes inherit user labels, and a
process is granted access to a resource only if their two labels meet some criterion of
comparison. For example, a TCSEC mandatory access control label has both a
hierarchical and a non-hierarchical component. Each subject is assigned a clearance and
one or more categories or compartments, and each object is typically assigned a
classification and one category. A subject is granted access to an object based on a

comparison of these values. In this case, the comparison is via an ordering relation
rather than an equivalence relation, but the underlying principle is the same. This
mechanism also addresses the concepts of rings and privilege states, in which a
process is granted access to successively greater numbers of resources as its label
increases in value according to some ordering relation.

The underlying concept of labels has analogies to capabilities in the sense that the
subject has ``possession'' of a particular value which gives the subject access to certain
objects. As with capabilities, the subject cannot change the value stored in the label;
unlike capabilities, the subject can only have one access label value per rule set at a
given time. For example, a user may be cleared to the Secret level, but if he has
logged on at the Unclassified level, the rule set will not allow him to access data at the
Secret level.

A label is a relatively simple mechanism that can serve as the basis for a number of
more complex mechanisms. The principal limitation is that a subject can only have
one access label value per rule set at a given time. This fact limits the flexibility of the
mechanism. Increasing the number of labels per subject or object limits their benefit,
since complexity of label assignment rapidly increases unless a structured
mechanism such as capabilities, access control lists, or access control triples is used
instead.

4.4 POLICY OF FAULT TOLERANCE

Systems that support mission-critical applications must not only preserve integrity to
the extent possible, but also must detect and attempt to correct integrity failures that
result from unavoidable situations, such as physical failures of equipment or media.
Systems which do this support a policy of fault tolerance.

The policy of fault tolerance potentially involves two parts. The first part is the
detection of errors. Detection is necessary for a system to determine when a failure
has occurred. Detecting errors that are corrected by the system is as essential as
detecting failures that cannot be corrected, since such failures may indicate a potential
degradation of system performance, or may indicate that the system is approaching a
threshold at which errors are no longer correctable. We will discuss fault tolerant
error detection mechanisms under the policy of summary integrity checks. The second
part of the policy of fault tolerance is the attempted correction of errors. We will discuss
fault tolerant error correction mechanisms under the policy of error correction.

4.4.1 Policy of Summary Integrity Checks

All mechanisms supporting the policy of summary integrity checks provide a
``second copy'' of a group of data against which the first copy may be compared in
order to detect changes. Nearly all of these mechanisms operate by producing a
smaller piece of data which is computed from the collection of data whose integrity is to
be verified. This approach has an inherent weakness because reducing the size of the
summary data will result in loss of information, except to the extent that the original
data has redundancies which can be removed by data compression techniques. The

result is there will be more than one value of the original data for which the summary
data is identical, and by judiciously changing the original data, the computed
summary data may still indicate that the data is unchanged. This ``judicious changing''
type of attack is used by some virus programs to circumvent checksum programs
intended to detect the viruses. We describe five summary integrity check mechanisms
below: transmittal lists, checksums, cryptographic checksums, chained checksums, and
the check digit.

4.4.1.1 Mechanism of Transmittal Lists

When batches of data are stored or transmitted together, a transmittal list may
be attached to the data. This list identifies what data are included in the batch, and
may be used to verify that no data are missing. Transmittal lists are used to provide
confirmation that all the components of a multipart data object are present, but do not
generally provide for detection of modification of the components still present, unless
combined with other techniques. The same is true with data counts, a generalization of
a transmittal list in which simple counts of data are used to ensure that no data are
missing. Data counts are weaker than transmittal lists in the sense that they do not
provide information on missing components.

4.4.1.2 Mechanism of Checksums

When a block of data is transferred from one point to another, a checksum is often
added to the block of data to help detect errors. A checksum is a numeric value that is
computed based on the entire contents of the data. When the original data is created, a
checksum is calculated and appended to it. The checksum is then regenerated when
the data is received at its destination or, in some applications, when the data is read
from memory. The regenerated checksum and the original checksum are then
compared to determine if an error has occurred. Checksums do not, however, protect
the data from destruction; they only provide a means for detecting when the data has
been tampered with.

A checksum is one of the stronger mechanisms for integrity checking. It can be very
difficult for an adversary to change the data without causing the checksum computed
from the changed data to be different from the checksum computed from the original
data. There are two properties of checksums that must be considered. First, checksums
need to be accompanied by other mechanisms (e.g., time stamps) to prevent replay.
Second, it must be realized that if the check- sum has fewer bits (contains less
information) than the data itself, there will always be more than one value of the data
that will result in the same checksum value. Given this fact, the function used to
compute the checksum should be such that changing a single, small portion of the data
will result in a high probability that the checksum will change. Also, the set of all
possible values of the data should produce all possible values of the checksum, with the
probability of generating a given checksum being evenly distributed for all possible
values of the data.

4.4.1.3 Mechanism of Cryptographic Checksums

 When data is transmitted over an open communications medium, where both the
data and the checksum are exposed to modification, the original data may be
vulnerable to undetected modification. An adversary may be able to modify the data,
recalculate the checksum, and store them in place of the original pair. To counteract
this threat, cryptographic techniques are used. Once a checksum is computed, it is
encrypted with a protected encryption ``key.'' If the checksum is encrypted, an
adversary must gain access to the encryption algorithm and key to change the checksum
to indicate that the data is still unmodified. With protected keys, the encryption
algorithm may be assumed to be known or discoverable by the adversary without harm
as long as the specific key remains unknown. Keeping both the algorithm and the
keys protected increases the work factor of the adversary in attacking the system,
but may also increase the cost of the system.

4.4.1.4 Mechanism of Chained Checksums

Checksums (either conventional or cryptographic), when applied to sequenced data,
may be made a function of the previously seen data. In accounting, these chained
check- sums are termed run-to-run totals. For example, a checksum may be computed
across multiple data, each of which has a checksum itself. This method is used to give
assurance via a single number that all preceding data is unaltered. However, as the
amount of data included in the chain or sequence increases, the probability of
undetected errors increases because there are more data values that will give the same
checksum as the number of bits of data increases in comparison to the number of bits of
the checksum. Thus, chained checksums have the advantage that they can detect
deletion of portions of the data, but have the disadvantage that the size of the data being
checked can become large in proportion to the size of the checksum.

4.4.1.5 Mechanism of the Check Digit

A check digit is simply a special case of a checksum, where the checksum is a single
digit. It is normally used only to check for gross unintentional errors, such as
mistyping of a numeric identifier code. A check digit does not provide much protection
against malicious attacks or against noisy transmission lines because the probability is
relatively high that even a randomly chosen digit will occasionally be correct. A ``parity
bit'' is an example of a binary check digit.

4.4.2 Policy of Error Correction

In addition to simply detecting incorrect data, it is possible to use methods to correct
errors in the data. The simplest approach to error detection would be to provide a
certain number of redundant copies of the data, possibly by different channels, and then
compare these at the time when it is desired to determine whether the data integrity
has been violated. This concept can be extended to error correction if it is possible to
tell which of the redundant copies of the data has not been altered. Various error
correction methods give varying probabilities of retrieving the original, unaltered data.
We describe two of these redundant copy methods below: duplication protocols and
handshaking protocols.

The process of providing redundant data can be improved upon in terms of
efficiency if assumptions are made about the types of errors likely to occur. In
particular, if it is expected that only a small portion of any one block of data is likely to
be altered, it is possible to reduce the amount of redundant data that has to be sent in
proportion to the number of bits of data expected to be changed. Error correcting codes
can be used to achieve error correction with less than a completely redundant copy
of the original data.

4.4.2.1 Mechanism of Duplication Protocols

In environments in which there is only one-way data communication, such as data
distributed by one-way radio broadcast, duplication protocols are used. These
generally involve duplicating the data being sent. One approach involves
duplication in time, re-sending the same data value several times, along with check
information. For example, a standard data protocol used in commercial shipping
communications involves representing each distinct data value as a binary number, the
sum of whose digits is a constant number, and sending small groups of consecutive
values several times. If it is found that one of the data values consists of digits that do
not add up to the constant, the value is assumed incorrect, and one of the redundant
copies of the data is tried. By timing the resending of redundant information according

to known error-generating properties of the medium, it is possible to minimize the
probability that all copies of the data value will be in error. The sending of small
groups of values several times rather than immediately repeating each value before
proceeding to the next serves to increase the likelihood that an error-generating
phenomenon will have abated before the data are resent.

Another approach to duplication of one-way data is by sending it by multiple
media. In the case of radio transmissions, the data may be sent on several frequencies
at the same time, since phenomena that interfere with communication on one frequency
often do not affect a different frequency at the same time. In the case of
communications by networks, the data can be sent simultaneously by several paths.
These approaches are essentially a form of redundant processing.

The simple redundancy exemplified by duplication protocols has a principal benefit
of simplicity; the algorithms needed to regenerate the data are simpler than those of
more compact error correction codes, and the density of error allowed may be greater.
Use of a diversity of media likewise allows for a greater density of errors; one or more
of the redundant channels may fail completely as long as one other channel continues
to function without error. But considerably more hardware resources may be required
for such an approach to duplicate all the components that may fail.

4.4.2.2 Mechanism of Handshaking Protocols

Handshaking protocols are one of the most frequently seen approaches to error
correction where two-way communication exists, as in computer networks. In
handshaking protocols, a block of data is sent, along with a check value for use with a
summary integrity check mechanism; the check value is used to check the transmitted
block for error on the receiving end. A reply is then returned to the sender indicating
whether or not the received data checked as valid. If an error is detected, the receiver
repeatedly requests the data until it is received without error. An example of a
handshaking protocol is the X.25 protocol used in hardwired and radio-based
communications networks.

This protocol is complicated by the fact that either messages or replies may be
entirely lost, and thus such a protocol must handle non-responses as well as
negative responses. This is the reason that messages indicating successful transmission
are returned, not just unsuccessful transmission. Furthermore, efficient use of the
communications medium may require that long delays not be incurred waiting for a

reply to come back from the receiver; in such a case, later blocks of data may be sent
while awaiting a reply to the first block. If a reply eventually comes back indicating
that a given block was not received, it can be resent out of sequence. This in turn
requires use of the chained checksum mechanism discussed earlier, to ensure that all
blocks are received and are put in the proper order.

To avoid building up an excessive backlog of unacknowledged messages, there is
usually a ``window'' of unacknowledged messages that are allowed to be outstanding;
if more messages would be sent than are allowed by this limit, sending stops until the
backlog is filled. Some protocols which allow sending messages in two directions at
the same time obtain further efficiency by combining acknowledgement messages for
data messages going in one direction with data messages going in the opposite
direction, and vice versa. The design of these protocols can become quite complex, but
the area is well researched and can result in very efficient protocols. On the other hand,
an isolated error in a message may require the entire message to be resent, and thus
the size of the message unit in proportion to the frequency of errors is an important
consideration in designing these protocols. This mechanism is commonly used in
supporting the real-time requirements of most computer systems, although it is
omitted from certain high-performance computer systems.

4.4.2.3 Mechanism of Error Correcting Codes

 Duplication and handshaking protocols assume that failure occurs at an
intermediate point beyond the sender of the data. If the sender's copy of the data is
damaged, these protocols will not be able to recover the data. Thus, an error
correcting code must be used on the original copy. For example, Hamming codes
employ the concept of overlapping parity to achieve error correction of original data.

The Hamming single error correcting code is formed by partitioning the original
data bits into parity groups and specifying a parity bit for each group. The ability to
locate which bit is erroneous is obtained by overlapping the groups of bits. A given data
bit will appear in more than one group in such a way that if the bit is erroneous, the
parity bits that are in error will identify the erroneous bit. For example, suppose that
there are four data bits (d3,d2,d1,d0) and, as a result, three parity check bits

(c1,c2,c3). The bits are partitioned into groups as (d3,d1,d0,c1), (d3,d2,d0,c2), and
(d3,d2,d1,c3). Each check bit is specified to set the parity, either even or odd, of its
respective group. Now, if bit d0, for example, is erroneous, both c1 and c2 are incorrect.
However, c3 is correct because the value of d0 has no impact on the value of c3.
Therefore, the error in bit d0 can be corrected.

Typically, an error correcting code is used to allow some limited portion of the
original message to be regenerated, given the correct value of the remaining portion.
As the amount of lost information that the code is supposed to be capable of
regenerating increases, the size of this code increases, so a tradeoff is made based on
the expected rate of error in the data. If the error rate is low, a smaller code may be
used, since the probability of a large number of errors in a single block decreases.

5 INTEGRITY MODELS AND MODEL IMPLE-
MENTATIONS

A computer security model is a high-level specification or an abstract machine
description of what a system does [Goguen 1982]; it provides a framework for linking
a security policy (security requirements for a given system) to the mechanisms that are
used to implement the policy. While models describe what types of mechanisms are
necessary to satisfy an integrity policy, model implementations describe how specific
mechanisms can be used together in a system to achieve integrity protection required by
a particular security policy. Several models and model implementations are examined
in this chapter.

5.1 INTEGRITY MODELS

In this section, we describe and analyze five models that suggest different
approaches to achieving computer integrity: Biba, Goguen and Meseguer, Sutherland,
Clark and Wilson, and Brewer and Nash. (footnote #1) Three of these models (Goguen
and Meseguer's, Sutherland's, and Brewer and Nash's) were not originally intended as
integrity models, but we show how they can be viewed as applying to the needs of
integrity. Although all five of these approaches establish sound restrictions for
limiting the manipulation of data, we have not been able to empirically determine
whether any of the models are complete or sufficient with respect to integrity.

[1] The Clark and Wilson model is not stated in formal mathematical terms
like the others, but formal axioms are not necessary to compare the ad-
vantages and disadvantages of each model.

5.1.1 Biba Model

5.1.1.1 Discussion of Biba

The model defined in [Biba 1977] was the first of its kind to address the issue of
integrity in computer systems. This approach is based on a hierarchical lattice of integ-
rity levels. The following basic elements are used to mathematically define the Biba
model:

S: the set of subjects s; the active, information processing elements of a
computing system;
O: the set of objects o; the passive information repository elements of
a computing system (the intersection of S and O is the null set);
I: the set of integrity levels;
il: S x O ==> I; a function defining the integrity level of each subject
and object; defines a lattice under the relation leq;
leq: a relation (subset of I x I) defining a partial ordering ``less than or
equal'' on the set of integrity levels I;
min: POWERSET(I) ==> I, a function returning the greatest lower bound
(meet) of the subset of I specified;
o: a relation (subset of S x O) defining the capability of a subject, s
element_of S, to observe an object, o element_of O: s o o;
m: a relation (subset of S x O) defining the capability of a subject, s
element_of S, to modify an object, o element_of O: s m o; i:a relation (sub-
set of S x S) defining the capability of a subject, s1 element_of S, to invoke
another subject, s2 element_of S: s1 i s2.

Integrity is evaluated at the subsystem level. A subsystem is some subset of a
system's subjects and objects isolated on the basis of function or privilege; a computer
system is defined to be composed of any number of subsystems, including only one.
Integrity threats are classified by Biba as being either internal or external to a
subsystem. An internal threat arises if a component of the subsystem is malicious or
incorrect. An external threat is posed by one subsystem attempting to change
(improperly) the behavior of another by supplying false data or improperly invoking
functions. Biba feels internal threats are sufficiently handled by program testing and
verification techniques; the Biba model then only addresses external threats.

The Biba model elements support five different integrity policies, which are
described below: the Low-Water Mark Policy, the Low-Water Mark Policy for Objects,
the Low-Water Mark Integrity Audit Policy, the Ring Policy, and the Strict Integrity
Policy. There is a sixth policy, called the Discretionary Integrity Policy, based on
ACLs and the Ring Policy that actually describes a specific proposal for modelling
integrity protection in the Multics operating system. Since ACLs are discussed earlier
and the Ring Policy is discussed here, the Discretionary Integrity Policy is not
addressed separately.

5.1.1.1.1 Low-Water Mark Policy

In this policy, the integrity level of a subject is not static, but is a function of its
previous behavior. The policy provides for a dynamic, monotonic, and non-increasing
value of il(s) for each subject. The value of il(s), at any time, reflects the low-water mark
of the previous behavior of the subject. The low-water mark is the least integrity level
of an object accessed for observation by the subject, and is formalized by the following
axioms:

for_all s element_of S, o element_of O
s m o ==> il(o) leq il(s)

for_all s1,s2 element_of S
s1 i s2 ==> il(s2) leq il(s1)

For each observe access by a subject s to an object o:
il'(s) = min {il(s), il(o)}

where il'(s) is the integrity level of s immediately following the access.

5.1.1.1.2 Low-Water Mark Policy for Objects

In addition to changing the integrity level of subjects, the Low-Water Mark Policy
for Objects postulates that the integrity level of modified objects also changes. This
alternate policy can be characterized by the following rules.

For each observe access by a subject s to an object o:

il'(s) = min {il(s), il(o)}

For each modify access by a subject s to an object o:
il'(o) = min {il(s), il(o)}

5.1.1.1.3 Low-Water Mark Integrity Audit Policy

This audit policy is an unenforced variant of the Low-Water Mark Policy for Objects.
It provides a measure of possible corruption of data with ``lower'' integrity level
information. A ``current corruption level'' (cl) for subjects and objects is defined in the
following manner.

For each observe access by a subject s to an object o:
cl'(s) = min {cl(s), cl(o)}

For each modify access by a subject s to an object o:
cl'(o) = min {cl(s), cl(o)}

The value of cl for an object represents the least integrity level of information which
could have been used to modify the object.

5.1.1.1.4 Ring Policy

The Ring Policy provides kernel enforcement of a protection policy addressing
direct modification. The integrity levels of both subjects and objects are fixed during
their lifetimes and only modifications of objects of less than or equal integrity level are
allowed. Flexibility of the system is substantially increased by allowing observations
of objects at any integrity level. The policy is defined by two axioms:

for_all s element_of S, o element_of O
s m o ==> il(o) leq il(s)

for_all s1,s2 element_of S
s1 i s2 ==> il(s2) leq il(s1)

5.1.1.1.5 Strict Integrity Policy

The Strict Integrity Policy is the mathematical dual of the confidentiality policy
presented in the TCSEC [DOD 1985]. It consists of three parts: a Simple Integrity
Condition, an Integrity *-property, and an Invocation Property. The Simple Integrity
Condition states that a subject cannot observe objects of lesser integrity. Written in
Biba's mathematical notation

for_all s element_of S, o element_of O
s o o ==> il(s) leq il(o)

This rule constrains the use of objects (data or procedures) to those whose non-
malicious character (by virtue of their integrity level) the subject can attest (those
objects having an integrity level greater than or equal to that of the subject). Biba
considers execute access to be equivalent to observe access, so objects must have an
integrity level greater than or equal to that of the requesting subject in order to be
executed.

The Integrity *-property states that a subject cannot modify objects of higher
integrity. Written in Biba's notation

for_all s element_of S, o element_of O
s m o ==> il(o) leq il(s)

This rule ensures that objects may not be directly modified by subjects possessing
insufficient privilege. The rule, however, assumes that the modifications made by an
authorized subject are all at the explicit direction of a non-malicious program. The
unrestricted use of subsystems written by arbitrary users (to whose non-malicious
character the user cannot attest) does not satisfy this assumption; the Simple Integrity
Condition guarantees this assumption is satisfied.

The Invocation Property states that a subject may not send messages to subjects of
higher integrity. Mathematically, the integrity level of the receiving subject must be
less than or equal to the integrity level of the sending subject:

for_all s1,s2 element_of S
s1 i s2 ==> il(s2) leq il(s1)

Invocation is a logical request for service from one subject to another. Since the
control state of the invoked subject is a function of the fact that the subject was
invoked, invocation is a special case of modification. Therefore, this rule follows
directly from the Integrity *-property.

5.1.1.2 Analysis of Biba

Biba defines integrity as a relative measure; it is not absolute. According to this
definition, a subsystem possesses the property of integrity if it can be trusted to
adhere to a well-defined code of behavior. No a priori statement as to the properties
of this behavior are relevant to determining whether or not the subsystem possesses
integrity; all that is required is that the subsystem adhere to the code of behavior. For
this model, the goal of computer system integrity is thus the guarantee that a subsystem
will perform as it was intended to perform by its creator.

This is a rather broad interpretation of integrity. The goal of every computer
system should be to perform as it was intended to perform; the real issue is whether the
creator designed the system in a manner that can achieve integrity. The Biba model
provides a hierarchical lattice for identifying authorized users and providing
separation at the user type level. These attributes allow the Biba model to address the
first goal of integrity identified at the beginning of the paper: preventing unauthorized
users from making modifications.

Of the integrity policies discussed by Biba, the Strict Integrity Policy is by far the
most widely addressed, so much so that this policy is often assumed when the Biba
model is discussed. The Strict Integrity Policy is the dual of one of the most common
and most thoroughly studied computer security policies/models, Bell and LaPadula.

A drawback to Biba's Strict Integrity Policy is how to assign appropriate integrity
labels. The Bell and LaPadula model fits the government classification system (e.g.,
hierarchical levels like Top Secret and Secret, and non-hierarchical categories like
NATO). There are established criteria for determining which disclosure levels and
categories should be given to both personnel (subjects) and documents (objects).
There are currently no corresponding criteria for determining integrity levels and
categories. In fact, the use of hierarchical integrity levels, which suggests that some
determination will be made about the ``quality'' of data and the ``quality'' of users,
seems inapplicable to most practical problems.

5.1.2 GOGUEN AND MESEGUER MODEL

5.1.2.1 Discussion of Goguen and Meseguer

Goguen and Meseguer [1982] introduce an approach to secure systems that is
based on automaton theory and domain separation. Their approach is divided into
four stages: first, determining the security needs of a given community; second,
expressing those needs as a formal security policy; third, modelling the system which
that community is (or will be) using; and last, verifying that this model satisfies the
policy. Their paper focuses on stages two (policy) and three (model); this discussion
focuses on the model.

Goguen and Meseguer distinguish sharply between a security policy and a security
model. A security policy is defined as the security requirements for a given system
(based on the needs of the community). In general, security policies are very simple,
and should be easy to state in an appropriate formalism. Goguen [1982, p 11] provides
a very simple requirement language for stating security policies, based on the concept
of noninterference, where

one group of users, using a certain set of commands, is noninterfering
with another group of users if what the first group does with those com-
mands has no effect on what the second group of users can see.

A security model is defined as an abstraction of the system itself; it provides a basis
for determining whether or not a system is secure, and if not, for detecting its flaws.
A high-level specification or an abstract machine description of what the system does
are examples of a security model. The authors develop a set theoretic model which is a
sort of generalized automaton, called a ``capability system.'' They achieve
noninterference by separating users into different domains; a domain is defined as the
set of objects that a user has the ability to access [NCSC 1988]. The Goguen and
Meseguer model has an ordinary state machine component, along with a capability
machine component which keeps track of what actions are permitted to what users.

5.1.2.1.1 Ordinary State Machine Component

The model is introduced by starting with the classic case in which what users are
permitted to do does not change over time. It is assumed that all the information
about what users are permitted to do is encoded in a single abstract ``capability
table.'' The system will also have information which is not concerned with what is
permitted; this information will include users' programs, data, messages, etc. In the
Goguen and Meseguer model, a complete characterization of all such information is
called a state of the system, and S is defined as the set of all such states. The system
will provide commands that change these states; their effect can be described by a
function

do: S x U x C -> S

where C is the set of state changing commands and U is the set of users. It might be
that if user u is not permitted to perform a command c, then do(s,u,c) = s; such
security restrictions can be implemented by consulting the capability table, and are
simply assumed to be built into the function do.

It is also assumed that for a given state and user, we know what output (if any) is
sent to that user. This aspect of the system can be described by a function

out: S x U -> Out

where Out is the set of all possible outputs (e.g., screen display states, listings, etc.). It
is assumed that all information given to users by the system is encoded in this
function. Putting this all together and adding an initial state, the result is an ordinary
state machine M consisting of the following:

 a. A set U whose elements are called ``users.''
 b. A set S whose elements are called ``states.''
 c. A set C whose elements are called ``state commands.''
 d. A set Out whose elements are called ``outputs.''

together with

a. A function out: S x U -> Out which ``tells what a given user sees
when the machine is in a given state,'' called the output function.
b. A function do: S x U x C -> S which ``tells how states are updat-
ed by commands,'' called the state transition function.
c. A constant s0, the initial machine state, an element of S.

The connection with the standard form of the definition of state machine is to take
U x C to be the set of inputs.

5.1.2.1.2 Capability Machine Component

In order to handle the dynamic case, in which what users are permitted to do can
change with time, it is assumed that in addition to the state machine features there are
also ``capability commands'' that can change the capability table. The effects of
such commands can be described by the function

cdo: Capt x U x CC -> Capt

where Capt is the set of all possible capability tables, U is the set of all users, and CC is
the set of capability commands. If a user u is not allowed to perform the capability
command c on the table t, the cdo(t,u,c) may be just t again; as before, this security
restriction is determined by consulting the capability table. The capability machine
component is itself a state machine, with state set Capt and input set U x CC; it models
the way in which the capability table is updated, and includes such possibilities as
passing and creating capabilities.

5.1.2.1.3 Capability System

The entire capability system is a cascade connection of the capability machine
component with the ordinary state machine component. In Figure 2, illustrating the
cascade connection, the function Check returns the information from the capability
table needed to determine whether or not a given command is authorized for a given
user.

(Figure 2. Not available for electronic version.)

Figure 2. Cascade Connection of Capability System

In order to distinguish capability commands from state commands, the definition of
a capability system denotes the set of all state commands by SC. So that the state
transitions and the outputs can be checked for security against the capability table, a
capability table component is added to the state transition function and to the output
function. Adding all this to the definition of an ordinary state machine, and also
adding an initial capability table, the result is a capability system M consisting of the
following:

a) A set U whose elements are called ``users.''
b) A set S whose elements are called ``states.''
c) A set SC whose elements are called ``state commands.''
d) A set Out whose elements are called ``outputs.''
e) A set Capt whose elements are called ``capability tables.''
f) A set CC whose elements are called ``capability commands.''

together with
a A function out: S x Capt x U -> Out which ``tells what a given

user sees when the machine, including its capability component, is in
a given state,'' called the output function.

b) A function do: S x Capt x U x SC -> S which ``tells how states are
updated by commands,'' called the state transition function.

c) A function cdo: Capt x U x CC -> Capt which ``tells how capabili-
ty tables are updated,'' called the capability transition function.

d) Constants t0 and s0, the ``initial capability table'' and the ``initial
machine state,'' respectively elements of Capt and of S.

5.1.2.2 Analysis of Goguen and Meseguer

Goguen and Meseguer's model is based on automata theory with all of the state
transitions predefined. The predefined transitions address the first goal of integrity
(preventing unauthorized users from making modifications). A significant advantage
of having the model based on a standard notion like the automaton is that extensive
literature and well-developed intuition become immediately applicable to the problem
domain. The fact that the states and corresponding transitions are predefined is both a
blessing and a curse. It is a great advantage to know exactly what the system will do
at any particular instant. However, it will be very difficult to define all of the states
and all of the transitions from one state to another. It will also be difficult to design the
system in a flexible manner so that new states can be easily added to the existing design.

Capabilities (as opposed to descriptors) provide the flexibility necessary to
implement domain separation. But traditional capabilities cannot control the
propagation, review, and revocation of access privileges [Gligor 1987]. It is unclear
whether traditional capabilities can be modified to realistically overcome these
weaknesses.

5.1.3 SUTHERLAND MODEL

5.1.3.1 Discussion of Sutherland

Sutherland [1986] presents a model of information that addresses the problem of
inference (e.g., covert channels). Sutherland uses a state machine as the basis of his
model, but he generalizes the model, apparently to avoid limiting it to the semantic
details of one particular type of state machine. Thus, his state machine consists of the
following:

a) A set of states
b) A set of possible initial states
c) A state transformation function mapping states to states

For each possible initial state, there is an execution sequence defined for each
sequence of possible state transformations starting from that initial state. Sutherland
generalizes the state machine's set of execution sequences as a set W of all such
execution sequences, which he terms ``possible worlds.'' A given execution sequence
or ``possible world'' is denoted w, where wW. The ``possible world'' of Sutherland's

model is actually even more abstract than we have represented here. As illustrated in a
``state machine instantiation'' appearing later in [Sutherland 1986], under one
interpretation of the model, an element w of the set W may consist not only of states,
but of ``signals'' (analogous to the ``requests'' and ``decisions'' of the Bell-LaPadula
model) interspersed between the states.

Sutherland formally represents the information obtainable from a subsequence of w
by defining a set of information functions, fi. Each fi represents the information that
can be obtained from one view of w. For example, assume a user has full access to the
subsequence of w needed to compute f1(w). If this user knows of an
interdependence (covert channel) between f1 and another information function, f2, to
which the user may have been prohibited access, the user can infer at least some
information about f2(w) from the user's knowledge of f1(w). Sutherland presents this
inference formally as follows.

1. The user knows f1(w)=x.
2. The user deduces w element_of S where S={y|f1(y)=x}.
3. The user deduces f2(w) element_of T where T=f2(S).
4. If there is an interdependence between f1 and f2 such that

there_exists z element_of f2(W)[z not_element_of T]
the user deduces

f2(w) =/= z.

Steps 1-3 above are straightforward generalizations from what the user knows of
f1; the f2 in step 3 could be an arbitrary function, and calling it f2 in step 3 only antici-
pates step 4.

It is in step 4 that the user makes the significant inference. The inference results
specifically from the user's knowledge that when the result of a particular subsequence
of states is seen, it is impossible for the system to have produced the result z. In such a
case, the user is able to conclude that the system has not produced a particular result to
which the user may have been denied direct access. The extent to which this
inference is useful depends on how much information is represented by knowing that
result z was not produced. If the user knows that only two results are possible, knowing
``not z'' would be of considerable value. Since the Sutherland model is so general, it
does include this and similar inferences.

A concrete example of such an inference would be the observation ``when program
1 produces result x, due to a flaw in the system, program 2 will be unable to
compute result z.'' Or, ``while the weapons control system is under test, the target
tracking system will not recognize a new target.'' Sutherland defines the case in which
information flows from f1 to f2 as the case in which a user seeing f1(w) is able to infer
that f2(w) =/= z.

Sutherland goes on to prove a theorem identifying cases in which inference is
possible (specifically, cases in which f1 and f2 are dependent), and from this theorem
derives an important corollary: that information flows are always symmetric. This
corollary has importance to integrity since it shows that the user who can control the
computation of f1 can influence the result of f2. This situation can be thought of as
a reverse covert channel.

5.1.3.2 Analysis of Sutherland

Sutherland's corollary that information flows are always symmetric suggests that
the model may have applicability to integrity. Sutherland speaks in terms of an
observer noting that the value of one information function f1 influences another
information function f2's set of possible values at a given point in time. If a user can
influence the subsequence w which is the argument to f1, and if information flows from
f1 to f2, the user can at least partially influence the value resulting from f2. In terms of
our previous example, a user who is able to initiate a test of the weapons control system
will be able to cause the target tracking system to malfunction, even though testing may
have been thought to be a harmless operation. Thus, the Sutherland model addresses
the first goal of integrity: preventing unauthorized users from making modifications.

The type of integrity violation represented in the Sutherland model is analogous to
a traditional covert channel. Whereas a covert channel communicates data from within
a protection domain that should be inaccessible to an outsider, a violation of the type
represented by the Sutherland model allows an outsider to influence the outcome of
processing occurring within an otherwise inaccessible protection domain.

The Sutherland model differs from some other integrity models in that it does not
emphasize a specific abstract protection mechanism. In the last section of the model's
exposition [Sutherland 1986, p 177], Sutherland does define a legal_to_get predicate
which represents abstract access control, and the formal definition of security is given
as

information_flows(f2,f1)==>legal_to_get(f1,f2).

Since f1 can be an abstraction for a subject (i.e., the information ``known'' by the
subject or in the subject's memory), this predicate can represent access restrictions
placed on a particular subject, as well as information flow restrictions between
individual data repositories, such as files or ``objects''. But the Sutherland model is
primarily involved with representing the goal of protection rather than with a means
of enforcing it.

5.1.4 CLARK AND WILSON MODEL

5.1.4.1 Discussion of Clark and Wilson

Clark and Wilson [Clark 1987, 1989] make a distinction between military security
and commercial integrity, and present a model for achieving data integrity. They
defend two conclusions. First, security policies related to integrity, rather than
disclosure, are of highest priority in the commercial data processing environment.
Second, separate mechanisms are required for enforcement of these policies, disjoint
from those in the TCSEC [DOD 1985]. This model has sparked the information systems
and computer security communities to press forward with integrity-related research.

There are two keys to the Clark and Wilson integrity policy: the well-formed
transaction and separation of duty. A well-formed transaction is structured so that a user
cannot manipulate data arbitrarily, but only in constrained ways that preserve or
ensure the internal consistency of the data. Separation of duty attempts to ensure the
external consistency of data objects: the correspondence between a data object and the
real world object it represents. This correspondence is ensured indirectly by
separating all operations into several subparts and requiring that each subpart be
executed by a different person.

The Clark and Wilson model is defined in terms of four elements: constrained data
items (CDIs), unconstrained data items (UDIs), integrity verification procedures (IVPs),
and transformation procedures (TPs). CDIs are data items within the system to which
the integrity model must be applied. UDIs are data items not covered by the integrity
policy that may be manipulated arbitrarily, subject only to discretionary controls. New
information is fed into the system as a UDI, and may subsequently be transformed into
a CDI. IVPs and TPs are two classes of procedures that implement the particular
integrity policy. The purpose of an IVP is to confirm that all of the CDIs in the system
conform to the integrity specification at the time the IVP is executed. An IVP checks
internal data consistency, and also may verify the consistency between CDIs and
external reality. TPs correspond to the concept of well-formed transactions discussed
above. The purpose of TPs is to change the set of CDIs from one valid state to another.

There are nine certification (C) and enforcement (E) rules that govern the
interaction of these model elements. Certification is done by the security officer, system
owner, and system custodian with respect to an integrity policy; enforcement is done
by the system. The rules are stated as follows:

C1: All IVPs must properly ensure that all CDIs are in a valid state at the
time the IVP is run.
C2: All TPs must be certified to be valid. That is, they must take a CDI
to a valid final state, given that it is in a valid state to begin with. For
each TP, and each set of CDIs that it may manipulate, the security officer
must specify a relation, which defines that execution. A relation is thus
of the form: (TPi,(CDIa,CDIb, CDIc, ...)), where the list of CDIs defines a
particular set of arguments for which the TP has been certified.

E1: The system must maintain the list of relations specified in rule C2,
and must ensure that the only manipulation of any CDI is by a TP, where
the TP is operating on the CDI as specified in some relation.
E2: The system must maintain a list of relations of the form: (UserID,
TPi, (CDIa, CDIb, CDIc, ...)), which relates a user, a TP, and the data ob-
jects that TP may reference on behalf of that user. It must ensure that
only executions described in one of the relations are performed.
C3: The list of relations in E2 must be certified to meet the separation of
duty requirement.
E3: The system must authenticate the identity of each user attempting to
execute a TP.
C4: All TPs must be certified to write to an append-only CDI (the log)
all information necessary to permit the nature of the operation to be re-
constructed.
C5: Any TP that takes a UDI as an input value must be certified to per-
form only valid transformations, or else no transformations, for any possi-
ble value of the UDI. The transformation should take the input from a
UDI to a CDI, or the UDI is rejected.
E4: Only the agent permitted to certify entities may change the list of
such entities associated with other entities: specifically, the entities asso-
ciated with a TP. An agent that can certify an entity may not have
any execute rights with respect to that entity.

Together, these nine rules define a system that enforces a consistent integrity policy.

The ultimate goal of the Clark and Wilson model is to stimulate the development of
better security systems and tools in the commercial sector. The authors suggest that
the first step toward this goal would be to develop a new set of criteria that would
more clearly address integrity enforcement. Clark [1987] offers a first cut at such a set
of criteria, and further refines the initial effort [Clark 1989].

5.1.4.2 Analysis of Clark and Wilson

The second goal of computer integrity was defined as maintaining the internal and
external consistency of data. The Clark and Wilson model addresses this goal through
the use of IVPs and TPs. The purpose of an IVP is to confirm that all of the CDIs in the
system conform to the integrity specification at the time the IVP is executed. An
example of an IVP is the accounting principle of an independent audit, in which the
books are balanced and reconciled to the external environment. An IVP verifies not
only internal consistency but also external consistency by periodically cross-checking
internal data with the external reality that it represents.

TPs maintain internal consistency by taking the system from one valid state to
another valid state. TPs are structured so that a user cannot manipulate data
arbitrarily, but only in constrained ways that preserve or ensure the internal
consistency of the data. In the accounting example, a TP would correspond to a
double entry transaction. Double entry bookkeeping ensures internal data consistency
by requiring that any modification of the books be composed of two parts, which
account for or balance each other. For example, if a check is to be written (which
implies an entry in the cash account), there must be a matching entry on the accounts
payable account.

Separation of duty is another major part of the Clark and Wilson model that
addresses the third goal of computer integrity: preventing authorized users from
making improper modifications. This goal is achieved indirectly by separating all
operations into several subparts and requiring that each subpart be executed by a
different person. For example, the process of purchasing and paying for some item
might involve subparts: authorizing the purchase order, recording the arrival of the
item, recording the arrival of the invoice, and authorizing payment. The last step
should not be executed unless the previous three are properly done. If each step is
performed by a different person, improper modifications should be detected and
reported unless some of these people conspire. If one person can execute all of these
steps, then a simple form of fraud is possible in which an order is placed and payment
made to a fictitious company without any actual delivery of items. In this case, the
books appear to balance; the error is in the correspondence between real and recorded
inventory.

The separation of duty method is effective except in the case of collusion among
employees. While this vulnerability might seem risky, the method has proved very
effective in practical control of fraud. Separation of duty can be made very powerful by
thoughtful application of the technique, such as random selection of the sets of people
to perform some operation, so that any proposed collusion is only safe by chance.

One of the nine rules defining this policy, rule E2, points out the major difference
between the Clark and Wilson model and the Bell and LaPadula model. Whereas the
lattice model of Bell and LaPadula defines access restrictions for subjects to objects, the
Clark and Wilson model (like the Lipner implementation) partitions objects into
programs and data, and rule E2 requires subject/program/data access triples. Access
triples are used to address the first integrity goal and also to implement the
separation of duties concept.

An access triple (or triple) is a relation of the form: (UserID, TPi, (CDIa, CDIb, CDIc,
...)). The system maintains a list of triples to control which persons can execute which
programs on specified CDIs. Chen [1989] suggests that it is possible to combine a
``user-to-program'' binding (which is already required in [DOD 1985]) with a ``pro-
gram-to-data'' binding to enforce the triple. According to Chen [1989], several systems

are capable of accommodating these bindings. In addition to the type manager/
pipeline approach taken by Boebert [1985] and the category approaches suggested by
Shockley [1988] and Lee [1988], the Resource Access Control Facility (RACF) and the
Access Control Facility 2 (ACF2) also appear capable of supporting user/program and
program/data bindings.

Initial examination of Chen's implementation of access triples indicates that it would
fail. Consider a system with two users (S1, S2), two transformation procedures (TP1,
TP2), and three constrained data items (CDI1, CDI2, CDI3). The system security officer
decides that the following triples should be enforced: (S1,TP1,CDI1), (S1,TP2,CDI2),
(S2,TP1,CDI2), (S2,TP2,CDI3). The following bindings would be required in order to
implement these triples using the approach suggested in [Chen 1989]: (S1,TP1),
(S1,TP2), (S2,TP1), (S2,TP2), (TP1,CDI1), (TP1,CDI2), (TP2,CDI2), (TP2,CDI3). The
(S1,TP1) binding required to satisfy the first triple combined with the (TP1,CDI2)
binding required to satisfy the third triple results in user S1 having access to data item
CDI2 through program TP1; this extra triple, (S1,TP1,CDI2), is a violation of system
integrity.

There is evidence to suggest that implementing triples directly on an actual system
may be prohibitively expensive in terms of performance [Karger 1988], or that
requiring triples may reduce design and implementation flexibility at the operating
system level [Chen 1989]. At the same time, triples do provide a means for limiting the
risk of authorized users making improper modifications. In fact, the Clark and
Wilson model effectively addresses all three goals of computer system integrity; the
question is whether this model can be implemented realistically.

5.1.5 BREWER AND NASH MODEL

5.1.5.1 Discussion of Brewer and Nash

The Brewer and Nash model [Brewer 1989] presents a basic mathematical theory
which is used to implement dynamically changing access permissions. The model is
described in terms of a particular commercial security policy, known as the Chinese
Wall. The model is developed by first defining what is meant by a Chinese Wall, and
then by devising a set of rules such that no person (subject) can ever access data
(objects) on the wrong side of that wall. The Chinese Wall security policy can be
most easily visualized as the code of practice that must be followed by a market
analyst who is providing corporate business services. Such an analyst cannot advise
corporations where he has ``insider knowledge'' about a competitor, but the analyst is
free to advise corporations which are not in competition with each other, and also to
draw on general market information.

The following basic elements are used to mathematically define the Brewer and Nash
model:

S: the set of subjects s; the users, or any program that might act on their be-
half;
O: the set of objects o; files in which items of information are stored;

X(o), Y(o):functions which determine respectively the x and y components
of the security label for a given object o;
xj, yj: X(oj) and Y(oj) respectively;
N: a boolean matrix with elements N(v,c) corresponding to the members
of SxO; the elements N(v,c) take the value true if subject sv has, or has
had, access to object oc or the value false if sv has not had access to object
oc;

In the Brewer and Nash model, all corporate information is stored in a
hierarchically arranged filing system where there are three levels of significance:

a At the lowest level, individual items of information, each concerning a
single corporation, are called objects.

b) At the intermediate level, all objects which concern the same corporation
are grouped together into a company dataset.

c) At the highest level, all company datasets whose corporations are in com-
petition are grouped together into a conflict of interest class.

Associated with each object oj is the name of the company dataset yj to which it
belongs and the name of the conflict of interest class xj to which that company dataset
belongs.

The basis of the Chinese Wall policy is that people are only allowed access to
information which is not held to conflict with any other information that they have
accessed previously. In this approach, a subject is initially given complete freedom to
access any object he cares to choose. For example, if there were three conflict of
interest classes with the following member datasets (a, b, c) (d, e, f) and (g, h, i), a
subject would initially be allowed access to all datasets a through i. If the subject
then accessed an object in dataset e, the subject subsequently would be denied access to
datasets d and f, while still having access to datasets a through c and g through i. If the
subject next accessed an object in dataset a, the subject would be denied access to
datasets b and c as well as d and f, leaving datasets a, e, g, h, and i accessible.

Two rules, the simple security rule and the *-property, are devised so that no subject
can access objects on the wrong side of the Wall. The simple security rule formally
defines that read access to any object or by any subject su is granted if and only if for all
N(u,c) = true (i.e., su has had access to oc):

((yc = yr) or (xc <> xr))

In other words, read access is only granted if or is in the same company dataset y as
an object already accessed by that subject (i.e., within the Wall) or if or belongs to an
entirely different conflict of interest class x. Once a subject has read an object, the only
other objects readable by that subject lie within the same company dataset or within
a different conflict of interest class. At most, a subject can have read access to one
company dataset in each conflict of interest class.

The *-property is based on the concept of sanitized information defined by the
authors. Sanitization takes the form of disguising a corporation's information, in
particular, to prevent the discovery of that corporation's identity. If sanitization can be
accomplished to prevent backward inference of origin, the sanitized information can
be generally compared with similarly sanitized information relating to other
corporations. Formally, for any object os, ys = yo implies that os contains sanitized
information, and ys <> yo implies that os contains unsanitized information.

Thus, the *-property formally defines that write access to any object ob by any subject
su is permitted if and only if N'(u,b) = true and there does not exist any object oa
(N'(u,a) = true) which can be read by su for which:

ya <> yb and ya <> yo

In other words, write access is only permitted if access is permitted by the simple
security rule, and if no object can be read which is in a different company dataset to the
one for which write access is requested and contains unsanitized information. Thus, the
flow of unsanitized information is confined to its own company dataset; sanitized
information may however flow freely throughout the system.

5.1.5.2 Analysis of Brewer and Nash

This Brewer and Nash model was introduced in the context of commercial
confidentiality requirements. We believe that a reinterpretation of this policy to address
integrity issues would be both productive and straightforward. This model could be
used in cases in which being able to access and make changes to two objects would
allow a subject to manipulate the information in these two objects to fraudulent ends.

For example, suppose a consultant works for two competing companies, Ace and
Acme, which both store information on their designs in a centralized DoD database. If
the consultant has knowledge of both company's products, the consultant could subtly
modify the design for Ace's product such that it had poor electromagnetic compatibility
with Acme's product. Even though it worked at other times, Ace's product would fail
in unexplained ways when used in the integrated weapons system in which Acme's
product also was used. Ace's product would function correctly during testing, but
would be perceived to be faulty in comparison to Acme's product when actually put
into use.

There would be no evidence that this failure had been the result of an integrity
violation in the design database; it would likely be perceived that Ace simply had done
an inadequate job in the design of their product, or just that their product tended to fail
a lot in the field. This type of conflict of interest problem was the origin of the Chinese
Wall policy, although the original application was in the financial community. The
Chinese Wall policy would prevent the consultant from accessing both companies'
information. Thus, it addresses the third goal of integrity - preventing authorized users
from making improper modifications.

The Chinese Wall policy was presented by Brewer et al. [1989] at the 1989 IEEE
Symposium on Security and Privacy as an example of a policy which it was felt could
not be addressed by the TCSEC requirements. As such, it is productive to identify
whether proposed TCSEC revisions add the functionality needed to implement this
policy. As was pointed out by John McLean in discussion following Brewer's
presentation, the policy can in fact be implemented using categories if the user's
allowed category set is permitted to change dynamically, and if this ability is used to
vary the category set as a result of user accesses in accordance with the Chinese Wall
policy.

Thus, it appears that categories or a comparable access partitioning mechanism are
sufficient to implement the Chinese Wall, if a mechanism is also provided to change
the user's allowed category set in response to user accesses. This feature is not
necessarily provided by existing TCSEC implementations, since the TCSEC neither
requires nor precludes support for dynamically changing category sets. Security
policies which prohibit changes in mandatory access permissions for active processes as
a result of a Tranquillity Principle that requires subjects to be inactive in order for their
security labels to change, will not be able to support the Chinese Wall.

5.1.6 SUMMARY OF MODELS

Five models have been developed which suggest fundamentally different ways of
achieving computer integrity. Biba [1977] was the first model to address integrity in a
computer system, and it has the most established base of research because it is based
on the Bell and LaPadula model for confidentiality. This model emphasizes the use of
hierarchical levels. There are still no criteria for determining integrity levels and
categories, so the Biba model does not seem to be the best approach for integrity.
Goguen [1982] notes the advantages of domain separation and automaton-based state
transformations. Capabilities would seem to be the most effective mechanism for
implementing this model; the question is whether capability systems can be modified
to control propagation, review, and revocation of access privileges. Sutherland [1986]
addresses the effect of covert channels on integrity. The Sutherland model is primarily
involved with representing the goal of protection rather than with a means of
enforcing it. Clark and Wilson [1987] introduce the concept of access control triples that
can be used to effectively implement separation of duties. This model was designed to
meet commercial data integrity needs, but it can also be used in meeting integrity needs
of secure military systems. Brewer [1989] presents a mathematical theory that
implements dynamically changing access permissions.

Each of the models described in this chapter addresses one or more of the integrity
goals defined at the beginning of the paper. All of the approaches address the first and
most basic goal of computer system integrity. The second goal is addressed by the
Clark and Wilson model, and the third goal is addressed by the Clark and Wilson
and the Brewer and Nash models.

5.2 5.2 INTEGRITY MODEL IMPLEMENTATIONS

In this paper, implementations suggest realistic approaches to the theoretical
basics identified in different models. While models describe what types of mechanisms
are necessary to satisfy an integrity policy, implementations describe how specific
mechanisms can be used together in a system to achieve integrity protection
required by a particular security policy. Six methods have been identified as proposed
implementations of one or more of the fundamental models described in the
previous appendix: Lipner, Boebert and Kain, Lee and Shockley, Karger, Jueneman,
and Gong. Lee and Shockley are two independently developed studies that are
counted as one as they take essentially the same approach. The Boebert and Kain
implementation is the only one we have been made aware of that is being actively
pursued as a worked example.

5.2.1 LIPNER IMPLEMENTATION

5.2.1.1 Discussion of Lipner

Lipner [1982] examines two ways of implementing integrity in commercial data
processing systems. The first method uses the Bell and LaPadula security lattice model
by itself. The second method combines the Bell and LaPadula model with Biba's
integrity lattice model.

Lipner's approach requires looking at security requirements in a different way from
the prevalent view taken in the national security community. In particular, non-hierar-
chical categories are considered more useful than hierarchical levels. While a company
will typically have organizational divisions (that correspond to categories), there will
almost never be a notion of individuals having a clearance (that corresponds to a
security level). Almost all employees work at the same level; they just do different
things within that level. The key is to appropriately define a set of access classes, user
types, and file types.

In Lipner's use of the Bell and LaPadula model, each subject and each object is
assigned an access class. An access class is composed of one hierarchical classification
level (e.g., Top Secret, Secret, Confidential, Unclassified) and one or more non-
hierarchical, descriptive categories (e.g., NATO, Intelligence). In forming a lattice
implementation to meet integrity requirements, the initial step is to define a set of
access classes appropriate to achieve the desired restrictions.

In Lipner's first method, two levels distinguish between system managers and
all other users, and four categories describe the types of work that are performed.
Several user types and file types are assigned different levels and categories to
implement integrity. Since almost all subjects and objects are assigned the ``System-
Low'' level, categories are the most important part of the access class. By appropriately
defining and assigning the categories, programmers, users, and system
programmers are each limited to their own sphere of activity.

In the second method, Biba's integrity model is added to the basic (security) lattice
implementation. The second method, like the first, assigns levels and categories to
subjects and to objects. Its objective, however, is to prevent the contamination of high-
integrity information by the infusion of lower-integrity data and by processing with
lower-integrity programs. Integrity levels are provided to prevent the modification of
system programs; integrity categories are used to separate different environments
(e.g., development and production). This approach is used to simplify and render
more intuitive a lattice policy application. It also limits the possibility of introducing
a ``Trojan horse.''

5.2.1.2 Analysis of Lipner

Lipner's implementation of the Bell and LaPadula and Biba models is the first work
to suggest that non-hierarchical categories are more important for integrity than
hierarchical levels. Categories are used to address the first goal of integrity. Lipner
took a survey of AIS auditors and AIS security officers to find that, in general,
commercial users do not write their own programs and commercial program developers
do not use the programs they write. Thus, users should not be ``above'' programmers,
and programmers should not be ``above'' users; both types of users are at the same
``level,'' but should be completely separated from one another. Therefore, the
appropriate use of categories is more important than the use of levels.

Lipner also appears to be the first person to separate objects into data and programs.
This distinction is important because it is the first step toward addressing the third
integrity goal (Clark and Wilson [1987] expand on this concept). Programs can be either
passive (when they are being developed or edited) or active (when they are being
invoked on behalf of a particular user), while data items are always passive. Programs
are the means by which a user can manipulate data; thus, it is necessary to control
which programs a user can execute and which data objects a program can manipulate.

Lipner's emphasis on categories and his separation of programs and data are
positive steps forward. However, this approach has several drawbacks:

a Controls are at the level of user types and file types as opposed to being
at the granularity of individual users and files; this is also a disadvan-
tage of the Bell and LaPadula and Biba models. This drawback means
that the granularity of control is inadequate to enforce access control
triples.

b) Lipner recognizes that data should be manipulated only by certified (pro-
duction) programs, but his controls do not provide a way to control what
data a particular program can manipulate; there is no program-to-data
binding explicitly called for.

c) Lipner's first method results in an ``all-powerful'' system manager who
could conceivably manipulate the system at will. An all-powerful mem-
ber of a computer system is always a risk because the least-privilege
principle is not enforced in such a situation.

d) Lipner's second method is complex and will be difficult to administer.

The last item requires some explanation. Assume we have a system with two
confidentiality levels (HiConf, LoConf) and two integrity levels (HiInteg, LoInteg);
assume that proper category assignments exist for the sake of simplifying this
explanation. The following combinations are possible:

a User1: HiConf, HiInteg
b) User2: HiConf, LoInteg
c) User3: LoConf, HiInteg
d) User4: LoConf, LoInteg

The Bell and LaPadula and Biba models use the operating system-oriented concepts of
read and write. These can also be generalized to communications-oriented concepts of
receive and send respectively. Bell and LaPadula requires that there be ``no read up''
and ``no write down'' in confidentiality level; Biba requires that there be ``no write up''
and ``no read down'' in integrity level. Thus, User1 may read (LoConf, HiInteg) and
(HiConf, HiInteg) objects and write (HiConf, LoInteg) and (HiConf, HiInteg) objects.
User2 may read any object and write only (HiConf, LoInteg) objects. User3 may
read-only (LoConf, HiInteg) objects and may write any object. User4 may read (LoConf,
LoInteg) and (LoConf, HiInteg) objects and write (LoConf, LoInteg) and (HiConf,
LoInteg) objects.

Notice that User1 would be allowed to read any object if there were no integrity
levels, but that the HiInteg level prevents him from reading half of the object types.
Similarly, User 4 would be allowed to read any object if there were no confidentiality
levels, but the LoConf level prevents him from reading half of the object types. The
point is that confidentiality and integrity levels have an effect on one another;
understanding this interaction and appropriately assigning levels to both users and
objects is complex and will be difficult to administer.

5.2.2 BOEBERT AND KAIN IMPLEMENTATION

5.2.2.1 Discussion of Boebert and Kain

Boebert and Kain [Boebert 1985, Boebert 1988] introduce an implementation of the
Goguen and Meseguer model using the concept of assured pipelines in the LOCK
(LOgical Coprocessor Kernel) machine-formerly known as the Secure Ada Target
(SAT). Assured pipelines provide a mechanism for ensuring that data of particular
types can only be handled by specific trusted software. An assured pipeline is a
subsystem that satisfies three properties: 1) it cannot be bypassed, 2) its actions cannot
be undone, and 3) its actions must be correct.

The LOCK reference monitor system, SIDEARM, checks every individual access
attempt for consistency with the security policy being enforced. The reference
monitor is implemented in hardware, and resides between the processor, which
generates memory access requests, and the memory system, which satisfies these
requests. The LOCK reference monitor is actually a combination of a memory
management unit (MMU), which has conventional rights checking facilities (read, write,

etc.), and a tagged object processor (TOP), a new module responsible for the system's
protection state. In particular, the TOP sets up the tables that define the access rights
checked by the MMU. The link between the two of them is the MMU tables and the
highly privileged code that sets the tables based on outputs from the SIDEARM
[Boebert 1990].

Security attributes are associated with both subjects and objects, and the TOP must
make appropriate comparisons between these security attributes to establish proper
access rights in the MMU. Three security attributes are associated with subjects and
three attributes are associated with objects. First, both subjects and objects have
security (confidentiality) levels. Each subject performs its function for some ``user,''
whose identity is the second subject security attribute. The corresponding object's
second security attribute is its access control list (ACL), which lists those users who are
allowed access to the object's contents, along with the maximum access rights that each
designated user is permitted. The third subject security attribute is the ``domain'' of its
execution, which is an encoding of the subsystem of which the program is currently a
part. The corresponding object's third security attribute is the ``type'' of the object,
which is an encoding of the format of the information contained within the object.

The process of determining the access rights to be accorded a particular subject for
access to a particular object uses all three security attributes. To enforce the
mandatory access policy, the TOP first compares security levels of the subject and of
the object, and computes an initial set of access rights according to the algorithm
defined in Section 4.1.1.4 of the TCSEC.

To enforce the discretionary access policy, the TOP then checks the ACL for the
object; the ACL entry that matches the user portion of the subject's context is
compared against the initial set of access rights from the mandatory policy computation.
Any access right in the initial set which does not appear in the ACL is deleted from
the initial set. The result of this second determination check is an intermediate set of
access rights.

The third LOCK access rights determination check compares the subject's domain
against the object's type. Each domain is itself an object, and one of its attributes is a
list of the object types accessible from the domain and the maximum access rights
permitted from the domain to each type. Conceptually, the aggregation of these
domain definition lists constitutes a table, which is called the Domain Definition Table
(DDT). To make the domain-type check, the TOP consults the DDT row for the
executing domain, finds the column for the object's type, and compares the resultant
entry against the intermediate set of access rights. Any right in the intermediate set
which does not appear in the DDT entry is dropped, and the result is the final set of
access rights, which is transmitted to the MMU.

Domain changing may occur as a side effect of a procedure call. If the called
procedure is not executable within the caller's domain, either the call is illegal or a
domain change is necessary to complete the call. Information concerning domain
changes is stored in a Domain Transition Table (DTT), which is stored as a set of lists
associated with the calling domain. The LOCK system creates new subjects to handle
domain changes, as required. When a call requires a domain change, LOCK suspends
the calling subject and activates the called subject. The called subject has a different
execution context, name space, and access rights, all of which will prevail for the
duration of the procedure's execution.

5.2.2.2 Analysis of Boebert and Kain

Boebert and Kain's implementation is an object-oriented approach that addresses the
first goal of integrity by focusing more on isolating the action than isolating the user.
In other words, domains restrict actions to being performed in only one place in only
one way; if you don't have access to that domain, you can't perform that action. This
approach should help in preventing users from gaining unauthorized access through
non-obvious paths.

This implementation is based on the Goguen and Meseguer model. The possible
states are defined by the DDTs, and the state transitions are defined by the DTTs. Thus,
integrity is achieved by carefully controlling these tables; this appears to be an
achievable goal, although storage and management of the large number of tables may
be complex. The Boebert and Kain approach is the only model
``implementation'' that is actually being implemented on a real system (LOCK). Their
reported experience to date has shown that least privilege can be achieved without
affecting system speed. The LOCK team is currently developing tools to aid in DDT
construction and assurance [Boebert 1990].

Boebert and Kain's implementation provides a great deal of flexibility. In order to
perform a certain action (e.g., modify an account balance), the user must have access to
the appropriate domain. The domain may then further restrict what specific programs
and data files the user can access (e.g., record a deposit for any account other than
the user's, and only delete from the user's account). However, this flexibility may make
the system more difficult to manage; some of the features may have to be restricted
to ensure that unintentional errors are not made which jeopardize integrity (e.g., the
user may be added to another account group that allows him to record deposits to his
own account).

5.2.3 LEE AND SHOCKLEY IMPLEMENTATIONS

5.2.3.1 Discussion of Lee and Shockley

Independently, Lee [1988] and Shockley [1988] developed implementations of the
Clark and Wilson model using Biba integrity categories and (partially) trusted
subjects. Both implementations are based on a set of sensitivity labels. This set is built
from two essentially independent components: every label represents a sensitivity
with respect to disclosure, and an independent component representing a sensitivity
with respect to modification. The labels corresponding to disclosure restrictions are
not discussed; here, only the integrity labels are discussed in detail.

Using Lee's notation, a trusted subject, S, has two integrity labels, view-minimum
and alter-maximum, denoted v-min(S) and a-max(S). Every object has one integrity
label, label(O). An integrity label is simply a set of integrity categories; the notion of a
hierarchical integrity level is not useful in this context. An integrity category can be
interpreted as the name of a particular type of protected data. A subject, S, may write
into an object, O, only if label(O) is a subset of a-max(S); S may read O only if either v-
min(S) or a-max(S) is a subset of label(O). Any subject S with v-min(S) = a-max(S) is an
untrusted subject.

Data is manipulated by ``certified transactions'' (TP in Clark and Wilson), which are
partially trusted subjects. A partially trusted subject is allowed to transform data from
a limited set of input types to a limited set of output types: it can read data that is
marked with at least one of the categories specified in the subject's view-minimum label
and still be allowed to write into data containers with any or all of the types in its alter-
maximum label.

5.2.3.2 Analysis of Lee and Shockley

In addition to the two integrity labels, v-min(S) and a-max(S), every subject, S, also
has two disclosure labels, v-max(S) and a-min(S). Each object has a disclosure label
and an integrity label, which are made up of one or more disclosure and integrity
categories respectively. Two requirements must be met for a subject to write to an
object. First, the object's disclosure label must dominate a-min(S)-no write down with
respect to disclosure. Second, a-max(S) must dominate the object's integrity label-no
write up in integrity. The subject similarly may not read up in disclosure-v-max(S)
must dominate the object's disclosure label-or read down in integrity-the object's
integrity label must dominate v-min(S). These views address the first integrity goal.

The views provide subject-to-program, subject-to-object, and program-to-
object bindings, which is sufficient to control which program a subject can invoke to
manipulate a particular object. However, views in general bind only classes-or types-
of subjects, programs, and objects, whereas the primary access control mechanism of
the Clark and Wilson model (triples) binds individual users, programs, and objects.

(footnote #2) Thus, while Lee and Shockley demonstrate a transformation of the Clark
and Wilson model to a lattice-based implementation, the actual operation of the such
an implementation would likely prove to be cumbersome. Shockley also states that
additions need to be designed and coded for building and checking tables of user/
program/data triples.

[1] It should be noted that the Shockley implementation does provide features for
control based on individual, identified programs.

The major difficulty with the Lee and Shockley implementations seems to be
management of large numbers of categories identified by Karger [1988]. Shockley
notes that the Gemini Secure Operating System (GEMSOS) TCB has 90 bits available to
represent access restrictions. The interpretation of these bits is confined to a single
internal module that is easily modified. Although GEMSOS can encode a large number
of categories (data types), managing these categories (storing all of the different
combinations and performing the dominance checks) was not discussed and would
seem to be a potential bottleneck.

The Lee and Shockley implementations do make three important contributions.
First, categories can be interpreted as data types; thus, strong typing is important for
implementing integrity. Second, a transaction-oriented approach seems best; thus,
database technology should be very relevant. Finally, non-hierarchical categories
alone are sufficient to implement the desired non-discretionary component of a Clark/
Wilson policy; thus, Biba's hierarchical levels are unnecessary. In this case, an
important question to ask is, will Bell and LaPadula's hierarchical lattice fit with this
non-hierarchical category approach? It is our conclusion that it will-the hierarchical
disclosure part should be able to be added to the non-hierarchical categories as an
additional restriction on access. In other words, assuming all of the sensitivity label
requirements were satisfied, a hierarchical disclosure level would just be one more
restriction on accessing an object.

5.2.4 KARGER IMPLEMENTATION

5.2.4.1 Discussion of Karger

Karger [1988] proposes an implementation of the Clark and Wilson model which
combines SCAP, his secure capability architecture [Karger 1984], with the lattice
security model. In this scheme, a capability-based protection kernel supports ACLs
(representing the security lattice) at the outer level. In a typical capability system, the
processor automatically loads capabilities into a cache for quick reference. Karger's
proposal is to cause a fault or trap to the most privileged software domain (i.e., the

security kernel) so that this privileged domain can evaluate whether the lattice model
permits the capability to be used. Once a capability has been evaluated, it is placed in
the cache so that it does not have to be reevaluated. If a lattice entry is changed,
revocation can be achieved by flushing all of the capabilities for that object from the
cache (causing new requests for the object to be freshly evaluated).

Karger suggests building CDIs out of abstract data types, with TPs as the
operations of the type manager. Sealed (encrypted) SCAP capabilities can be used to
implement abstract type management. As described above, SCAP can also intercept
attempts to exercise capabilities by the TPs and require that special access control list
checks be made to enforce separation of duty. Such an access control list for a TP would
contain the Clark and Wilson triples.

 As part of this implementation, audit trails form a much more active part of
security enforcement than in previous systems. Karger introduces ``token capabilities''
to make the use of audit information easier. While taking the form of capabilities to
prevent unauthorized tampering, token capabilities are in fact separate copies of
individual audit records. They include both the name of the transaction and the name
of the user who executed the transaction. The user's name must be recorded so that one
can ensure that TP1 and TP2 are executed by different people. The name of the TP is
recorded to prevent the token capability from being used more than once. Once used,
the token capability is marked to prevent further use.

Token capabilities are used in conjunction with access control lists to ensure that
permission to execute certain transactions or to modify certain CDIs can only be
granted if certain previous transactions have been executed by specific individuals.
Attempts to exercise regular capabilities cause an object's audit records (token
capabilities) to be examined and compared with the appropriate ACL entry. If the
request is determined to be legal, the regular capability is accepted and the desired
action can be performed. Token capabilities simply provide a mechanism for making
the proper audit records available for integrity policy decisions on a timely basis.

Entries in a separation of duty ACL are more complex than the simple ACLs
supported in previous systems. Each entry consists of a boolean expression in which
the first term is the name of the user who proposes to execute the action, and the
other terms are token capabilities for required predecessor transactions. The boolean
expression identifies the name and order of the preceding transactions that must be
executed. As a final note, the author states that mechanism complexity and system
performance will be problems regardless of the protection strategy that is adopted.

5.2.4.2 Analysis of Karger

By combining capabilities and access control lists, Karger greatly increases the
implementation flexibility for achieving integrity. Karger requires that the ACLs
contain the Clark and Wilson triples. This requirement by itself provides enough
functionality for a system designer to implement static separation of duties
(addressing both the first and third goals of integrity). Karger does not say how he
would implement the triples or whether current systems would be sufficient; this is an
important issue that must be addressed in future work.

The other part of Karger's implementation is the use of capabilities in support of the
ACLs. Capabilities are used to provide domain separation so that actions are limited to
particular domains, and also for quicker access. When a new capability is presented for
invoking a certain program on a particular object, a trap to the security kernel is made
to check the appropriate ACL entry. If the request is legal, the capability is stored in a
cache to make subsequent accesses much faster.

Karger's complex ACLs not only contain triples, but they also specify the order in
which transactions must be executed. These enhanced ACLs are used along with
audit-based token capabilities to enforce dynamic separation of duties. Token
capabilities can also be used to enforce well-formed transactions. The history of
actions contained in these capabilities can be used to implement two-phase commit
protocols. The two-phase commit protocol requires log records of all actions to ensure
that any transaction either completely succeeds or does not occur at all. These log
records are exactly the same records needed for making security policy decisions.

Notice that this implementation allows three levels of protection. First, triples
implemented in the ACLs allow for basic integrity (static separation of duties).
Second, capabilities can be used to support these ACLs to provide faster access and
domain separation. Finally, enhanced ACLs and token capabilities support both
dynamic separation of duties and well-formed transactions.

The additional flexibility provided by this implementation also creates some
problems. Enhanced ACLs are much more complex than the ACLs implemented on
current systems; thus, they may be more difficult to develop and to maintain. Token
capabilities will add overhead that may become overly burdensome on system
performance. Also, adding new applications may have a significant effect on existing
separation of duty ACLs. Most importantly, future research needs to develop an
efficient way of implementing access control triples.

5.2.5 JUENEMAN IMPLEMENTATION

5.2.5.1 Discussion of Jueneman

Jueneman [1989] proposes a defensive detection scheme that is based on mandatory
and discretionary integrity controls, encryption, checksums, and digital signatures.
This approach is intended for use on dynamic networks of interconnected Trusted
Computing Bases (TCBs) that communicate over arbitrary non-secure media.
Mandatory Integrity Controls prevent illegal modifications within the TCB, and

detect modifications outside the TCB. Discretionary Integrity Controls are useful in
supplementing the mandatory controls to prevent the modification, destruction, or
renaming of an object by a user who has the necessary mandatory permissions, but is
not authorized by the owner of the object. Encryption is used by the originator of an
object to protect the secrecy or privacy of information. Checksums provide
immutability and signatures provide attribution to allow the recipient of an object to
determine its believability. The originator of an object should be responsible for
assuring its confidentiality. The recipient should be responsible for determining its
integrity.

It is assumed that the TCBs provide the equivalent of at least a B2 level of trust in
accordance with the TCSEC. The B2 level provides mandatory and discretionary
access controls and labels, process isolation achieved through the provision of distinct
memory spaces under the control of the TCB, and the use of memory segmentation and
read/write protection. In addition, in order to support the concept of separation of
duty, the ability to exclude individuals or groups of individuals from accessing
specified objects is assumed-a B3/A1 feature. Embedded cryptographic functionality is
also assumed.

This implementation enforces mandatory and discretionary integrity controls across
a computer network through the use of integrity labels. Two concepts are basic to an
integrity label: integrity domain and integrity marking. Jueneman defines an integrity
domain as the set of allowable inputs to a program (process) together with syntactic
and semantic rules used to validate or reject those inputs and optionally produce one or
more outputs. This use of the term ``domain'' is different from the definition used in
both the TCSEC and the Boebert and Kain implementation, i.e., the set of objects that
a subject has the ability to access.

An integrity marking has both hierarchical and non-hierarchical components. A
hierarchical integrity level is an estimated probability that the process which created an
object did so in accordance with the rules of a particular integrity domain or domains.
Combining two or more integrity domains, the probabilities are assumed to be
independent and are multiplied together to get an overall level (probability). A non-
hierarchical integrity category qualifies the hierarchical integrity level; it is a
shorthand representation of identifying the rules of the integrity domain that applied
to that subject or object.

Integrity labels are incorporated as header and trailer labels within encrypted subject
information or encrypted objects themselves. Subjects, data files, and programs each
have different integrity labels. The particular elements included in these label types
are discussed below.

5.2.5.1.1 Subject Integrity Label

A subject's integrity label contains a readclass, a writeclass, and a digital signature.
A readclass is the range from the minimum integrity-read-limit to the maximum
security-read-limit; a writeclass is the range from the minimum security-write-limit to
the maximum integrity-write-limit. The read and write limits are made up of integrity
markings.

A digital signature is a means by which a particular user or TCB digitally ``signs''
for the validity of objects it modifies. It provides non-repudiation protection of both the
authorship of an object and the object's contents. Once a user has modified an object, he
can digitally sign the object to unambiguously indicate his willing and conscious
approval of the results. A receiver may require the originator's digital signature before
an object will be processed.

5.2.5.1.2 Data File Integrity Label

The integrity label for a data file contains an integrity marking, a cryptographic
checksum of the entire contents of the file, the name and cryptonym (digital
signature) of the originator, and a bottom-up system of digitally signed certificates. A
checksum is a separable code that is added to a block of data to help detect errors
[Johnson 1989].

When original data is created, an extra piece of information, called the checksum, is
appended to the block of data. The checksum is then regenerated when the data is
received at its destination; the regenerated checksum and the original checksum are
compared to determine if an error has occurred in the data, the checksum generation,
the checksum regeneration, or the checksum comparison. Once a checksum has been
computed, the original data and the check-sum are encrypted to produce a
cryptographic checksum.

The digitally signed certificates are actually individual audit records. Each audit
record has a ``pedigree'' part and a (optional) ``provenance'' part. The pedigree
records which users ran what processes against what data inputs in order to produce
given output(s); it is digitally signed by a TCB to show the TCB's approval. The
provenance contains ancillary information (documentation, specifications, test cases
and results, etc.); it is digitally signed by a user to show the user's intent.

5.2.5.1.3 Program Integrity Label

A program's integrity label contains all of the elements listed for a data file, and
also includes the program's integrity domain.

5.2.5.2 Analysis of Jueneman

Jueneman makes a very good point when he says that ``it is almost impossible to
discover or stop all [illegal actions] by [malicious] programs'' (e.g., virus, Trojan
horse, unintentional errors in any systems or applications program). Therefore, his
approach is to use a defensive containment mechanism that can at least detect any
change to a subject or object, and that cannot itself be subverted, in order to prevent such
programs from affecting the rest of the system. This approach itself seems to be a very
appropriate type of design philosophy for integrity: detection instead of prevention.

Jueneman chooses to implement this design philosophy with some mechanisms
that appear impractical, and some mechanisms that appear quite effective. His use of
hierarchical probabilities and qualifying, non-hierarchical rules (categories) for
achieving TCB integrity is complex and would be difficult to implement. It would be
difficult to assign a consistent numerical value as to whether certain rules were
followed (other than 0 or 1), and developing appropriate rules would be slow and
application specific at best. Thus, it would seem more reasonable to use another
implementation for TCB integrity.

 However, Jueneman's use of encryption, checksums, and digital signatures seems
to be an excellent proposal for addressing the first integrity goal at the distributed
system level. Significant work has already been done in these three areas. Encryption,
checksums, and digital signatures are well understood, and they add necessary
integrity protection for distributed systems. To re-emphasize Jueneman's
approach: the originator of an object is responsible for assuring its confidentiality,
and the recipient is responsible for determining its integrity.

5.2.6 GONG IMPLEMENTATION

5.2.6.1 Discussion of Gong

Gong [1989] presents the design of an Identity-based CAPability protection system
(ICAP), which is aimed at a distributed system in a network environment. ICAP
merges the ACL approach and the capability approach; ACLs support a capability
protection mechanism (just the opposite of Karger's SCAP), and nicely solve the
problem of revocation. Gong's design provides support for administrative activities
such as traceability. This approach also works for a centralized system. Compared
with existing capability system designs, ICAP requires much less storage and has the
potential of lower cost and better real-time performance.

A classic capability is represented as
 (Object,Rights,Random)

in which the first item is the name of the object and the second is the set of access rights.
The third is a random number to prevent forgery and is usually the result of a one-
way function f,

 Random = f(Object,Rights)

Here, f can be a publicly known algorithm. It should not be based on other secret keys
because key distribution introduces other difficulties. Its requirements are that it is
computationally infeasible to inverse f and, given a pair of input and matching output, it
is infeasible to find a second input which gets the same output. When an access
request arrives at the object server together with a capability, the one-way function f is
run to check the result against the random number to detect tampering. If the
capability is valid, the access is granted to the subject.

In a classic system, a capability is created for each different set of access rights
required for each object, and the capabilities that are kept by the server and other
subjects for the same set of rights are the same. For example, if subject S1 possesses a
read-only right and S2 possesses a read and write right for an object, the server has to
have two different capabilities, C1 and C2. S1 holds C1 and S2 holds C2.

In ICAP, only one capability for each object is stored at the server, and different
subjects' capabilities for the same object are distinct. This improvement in storage is
achieved by changing the semantics of those items in traditional capabilities to
incorporate identities, e.g., the owner-id, into the capabilities. When the server creates
a new object on behalf of a subject S1, an ``internal'' capability is created as

 (Object,Random0)

and stored in the server's internal table. As usual, this table is protected against
tampering and leakage. S1 is sent an ``external'' capability

 (Object,Rights,Random1)

which looks exactly the same as a classic capability but
 Random1 = f(S1,Object,Rights,Random0)

When S1 presents the capability later, the server runs the one-way function f to check its
validity. Note the number Random0 should possess a kind of freshness to counter a
playback attack. For example, it could have a timestamp.

The server holds only one internal capability for each object, regardless of how
many different subjects have access to a particular object. Thus, there is a reduction in
the amount of storage required at the server. Subjects continue to hold distinct external
capabilities for each object they are allowed to access.

When S1 wants to pass its external capability
 (Object,Rights,Random1)

to a process owned by S2, it must explicitly present the request to the server. If the
request complies with the security policy, the server retrieves the secret Random0
from its internal table, creates

 (Object,Rights,Random2)

where

 Random2 = f(S2,Object,Rights,Random0) and passes it to S2.

Because the internal random number is kept secret, external capabilities are
protected against forgery. Moreover, since proper authentication is done, subjects
cannot masquerade as others. Subject S2 cannot use S1's capability even if S2 possesses a
copy of S1's capability because the identities are different, hence the results of
applying f will be different; S2 must be given its own capability to access a particular
object. Any valid propagation has to be completed by the server rather than by the
subjects. In other words, the server can monitor, mediate, and record any capability
propagation.

When a capability is to be propagated, the kernel or an ``access control server'', which
may or may not be the object server, checks to see whether to allow the propagation,
according to the security policy. The intuitive motive of this scheme is the
observation that the number of capability propagations is usually much less than the
number of their uses, so it seems more economic to check the security policy at
propagation time than at access time. The object server does not check against the
security policy when a capability is later used for access. Instead, exception lists and
propagation trees are used to revoke access.

Exception lists are associated with each internal capability to achieve rapid
revocation. When S1 wants to revoke a capability it gave S2 earlier, it presents the
request to the server. The server then updates the corresponding exception list.
When an access is required, both the exception list and the capability's validity are
checked. These checks can be done in parallel.

Capability propagation trees are stored at the access control server, and they can be
resolved in background mode to achieve complete revocation. For a capability passed
from S1 to S2 and then to S3, the propagation tree entry would look like

 (Object,Rights,S1,S2,S3,Random3)

where
 Random3 = f(S1,S2,S3,Object,Rights,Random0)

When something goes wrong, it is straightforward to know from the access control
lists who has what access to an object. In addition, it is easy to know from the
propagation trees how the access rights were propagated.

5.2.6.2 Analysis of Gong

Gong's implementation is an effective, conceptually straight-forward
implementation of access control lists supporting a capability-based protection system.
His approach takes advantage of the domain separation and performance
characteristics of capabilities, while maintaining control over propagation and
revocation of access rights. Just as importantly, the structure of the implementation is
simple and allows the incorporation of any disclosure and/or integrity policy. This
implementation can be used to address the first and third goals of integrity.

The implementation is made up of users, objects, object server(s), and a centralized
access control server. The access control server maintains ACLs that describe the
desired protection policy, and it also monitors any new requests for capabilities. An
object server maintains one internal capability for each object, and communicates with
the access control server on behalf of the users. These two types of servers each contain
additional data structures that Gong uses to solve the two main problems encountered
in the past with capability-based protection systems: propagation and revocation.
Propagation trees are stored on the access control server to keep track of which users
have access to an object and how they obtained that access. Each object server stores an
exception list that records when a user wants to revoke access to another user.

This implementation provides flexibility in several areas. The most significant
accomplishment is that the type of protection policy is immaterial to Gong's
implementation; it could be a Bell and LaPadula disclosure lattice, a Biba integrity
lattice, Clark and Wilson triples, or Lee/Shockley non-hierarchical categories. Whatever
the policy, it is incorporated as part of the access control server.

There are other aspects to Gong's implementation that allow for flexibility of use.
First, domain IDs can be incorporated into user IDs, if necessary. Second, discre-
tionary control can be added on top of the existing non-discretionary control structure.
Third, sealed (encrypted) capabilities can be used to implement protected subsystems.
Finally, the given capability structure can be expanded.

Gong's implementation has two additional advantages besides flexibility. First,
the protection policy is checked at propagation time, which is more economic than
checking the policy on each access. Second, although exception lists are very useful for
achieving rapid revocation, complete revocation can be performed in the background
by the access control server. This structure also allows revocation to be withdrawn.
Since revocation is initially marked in the exception list, a false alarm or error can be
resolved without invoking the expensive full revocation mechanism.

A disadvantage in the Gong implementation is that it can only implement static
separation of duties because the ACLs are not checked at access time. This limitation
may be a major drawback in the long run if dynamic separation of duties becomes an
accepted and required part of system specifications.

5.2.7 SUMMARY OF MODEL IMPLEMENTATIONS

Based on one or more of the models we have discussed, seven implementations
have been identified and analyzed. Lipner [1982] is the first work to emphasize the
importance of non-hierarchical categories for achieving integrity. This implementation
also introduces the important distinction between program objects and data objects.
Boebert [Boebert 1985, Boebert 1988] presents a flexible, object-oriented approach that
focuses more on isolating the action than isolating the user. Lee [1988] and Shockley
[1988] introduce minimum and maximum views for controlling access to objects. This
approach may be difficult to manage, but it does point out the usefulness of strong
typing and transaction-based operations. Karger [1988] and Gong [1989] both combine
the advantages of capabilities (speed and domain separation) and ACLs (review and
revocation). Karger's approach uses capabilities in support of ACLs; Gong uses ACLs
in support of capabilities. Karger provides more flexibility, but Gong's approach seems
to be more realistic for use in an actual system. Jueneman [1989] has a highly complex
approach for TCB integrity, but his use of encryption, checksums, and digital signatures
seems to be an excellent proposal for promoting and preserving certain aspects of
integrity in distributed systems.

Each of the implementations described in this section address one or more of the
integrity goals defined at the beginning of the paper. All of the approaches address
the first, and most basic, goal of computer system integrity. The second goal is not
addressed directly by any of the implementations. The third goal is addressed by
several implementations [Lee 1988, Shockley 1988, Karger 1988, Gong 1989] that
recommend using concepts described in the Clark and Wilson model.

5.3 GENERAL ANALYSIS OF MODELS AND MODEL IMPLE-
MENTATIONS

Models and model implementations that protect information in computer systems
are all based on some policy variation of the principle of separation. A common theme
is to restrict access to information by separating more ``sensitive'' information from less
important data, and concentrating the protection effort on the sensitive information.
We have described several models and implementations which have different
philosophies on the concept of separation. Now we look at the pros and cons of five
separation philosophies: hierarchical levels, non-hierarchical categories, access control
triples, protected subsystems, digital signatures, and encryption. We also discuss the
combination of capabilities and ACLs, and conclude with a general analysis.

5.3.1 Hierarchical Levels

One of the earliest computer protection models was developed in 1975 by Bell and
LaPadula, with the emphasis being to prevent unauthorized disclosure of data or
information. Their approach to modelling separation was through a lattice, designed to
neatly coincide with the existing governmental classification structure (e.g, Top Secret,
Secret, Confidential, Unclassified). The Bell and LaPadula model was the inspiration
for Biba's integrity model. Both models emphasize levels in establishing rules for
information protection.

The current governmental classification system is oriented toward preventing
improper disclosure of information; Bell and LaPadula developed their model with
this classification system in mind. If a similar classification system were developed for
preventing improper modification, the Biba model would be a good choice for
representing these needs. Until then, hierarchical levels will not be very useful for
computer system integrity.

5.3.2 Non-hierarchical categories

The term ``category'' is used to describe non-hierarchical separation. In 1982, Lipner
expressed the need to have a different outlook on computer security. He
recommended that primary emphasis be placed on categories, and only minor
emphasis be placed on levels. Outside of the government, few organizations operate
according to the concept of levels. Most companies have employees at the same
``level'', but with different responsibilities. Even if levels are implemented, categories
must provide appropriate separation between users within each level. The concept of
``roles'' may be more accurate or applicable.

5.3.3 Access Control Triples

Lipner was the first person to identify the need for distinguishing between program
objects and data objects. Clark and Wilson built on this distinction to establish the
concept of access control triples. Clark and Wilson view triples as being necessary
for implementing integrity because triples allow the explicit identification of which
data a user is allowed to manipulate with a particular program. Triples also provide the
ability to implement separation of duty, another necessary attribute of a computer
system that has integrity.

Triples provide a useful paradigm for implementing integrity. While the Clark
and Wilson model does not have all the details worked out, we believe that it is a
useful guide for future research in addressing computer system integrity.

5.3.4 Protected Subsystems

Goguen and Meseguer introduced an automaton-based model that focuses on the
transition from one valid state to the next as defined by the particular security policy
being enforced. The emphasis of this model is to separate users' working spaces to
provide non-interference and to prevent unauthorized access. Boebert and Kain's
implementation is based on this concept of protected subsystems.

Protected subsystems implement a finer degree of separation within categories.
They exclude certain access rights that a user has outside the subsystem. A user can
only access certain objects from within the protected subsystem, and then only in
constrained ways defined by the subsystem.

Strong typing is a promising area for implementing protected subsystems. Strong
typing provides separation by limiting the number of entry points for executing
certain programs. In other words, a user must have access to the appropriate type in
order to execute the programs within that domain. However, strong typing does not
limit the execution of specific programs once a user has entered the domain; that is the
responsibility of access controls (i.e., triples).

5.3.5 Digital Signatures/Encryption

The last philosophy of separation is based on digital signatures and encryption.
Jueneman is the biggest supporter of this approach; he strongly argues that digital
signatures and encryption are the only way to provide protection across a distributed
network. Jueneman may be correct in this matter, although the use of digital signatures
and encryption appears to be a necessary rather than a sufficient mechanism for
protection in distributed environments.

5.3.6 Combination of Capabilities and ACLs

Both Karger and Gong combine the advantages of capabilities (protection domains
and performance) and ACLs (control over propagation and revocation of access rights)
to provide protection. Karger's model allows for dynamic separation of duties, but
Gong's model is simple, implementable, and more efficient for static separation of
duties.

5.3.7 Summary of General Analysis

Having analyzed each of the individual models, some overall conclusions can be
identified. First, as Lipner suggested, categories seem to be much more important
than levels for implementing integrity. Also, it is important to distinguish between
program and data objects because programs are the means by which a user modifies
data objects. Second, the Clark and Wilson model appears to be a useful starting point
for addressing the issues of integrity. In particular, access triples are recommended (if
not required) to explicitly identify which programs a user may invoke to modify
particular data objects; triples cannot be implemented with existing systems. Third,
encryption and digital signatures look to be an effective way of maintaining integrity

over a distributed network. Fourth, the combination of capabilities and access control
lists provides maximum separation, efficiency, and access review. Finally, many of the
models talk about validation and verification of the programs that carry out the actual
manipulations (TPs in Clark and Wilson). Continued research needs to focus on
methods for assuring that programs do what they are intended to do and nothing more.

6 CONCLUSIONS

This paper has discussed the need for integrity to be promoted and preserved with
respect to data and systems. It has recognized that this need exists for military, public,
private, and commercial organizations who depend on the integrity of their systems
and their data in automated information processing, process control, and embedded
computing applications. Further, it has shown that this need has been recognized since
the early days of computer systems development, and that many of the protection
mechanisms now routinely incorporated into today's computers were the result of
addressing concerns of integrity. This latter point is important in that often the
argument is made that we have had no worked examples of integrity and that we need
to conduct a significant amount of research before any criteria are written. This paper
tries to add some balance to that argument. The paper illustrates that there is a sig-
nificant body of knowledge available about integrity and integrity mechanisms, and
that such knowledge can be presented in a way to aid in initial formulations of
criteria. The paper also recognizes that there are many aspects of integrity that
require further investigation. It is the idea of concurrently pursuing both criteria and
criteria-enabling research that we believe is key to making the rapid advances necessary
in meeting the recognized needs for integrity.

6.1 SUMMARY OF PAPER

The paper discussed the difficulty of trying to provide a single definition for the term
integrity as it applies to data and systems. We conclude that a single definition is
probably not possible and, indeed, not needed. An operational definition that
encompasses various views of the issue seems more appropriate. We offer such an
alternative so that progress beyond definitional aspects can be made. Our framework,
or operational definition, provides a means to address both data and systems integrity
and to gain an understanding of important principles that underlie integrity. It
provides a context for examining integrity preserving mechanisms and for
understanding the integrity elements that need to be included in system security
policies.

The paper has provided a set of principles that are important to integrity. We do
not claim that the set is complete or applies to all systems or applications. We do
believe that it is useful as basis for developing integrity policies and mechanisms. We
encourage others to debate and to strengthen this set of principles.

We have shown that the promotion and preservation of data and systems integrity
can involve a wide diversity of mechanisms. The mechanisms have been categorized
to show that they serve a relatively small set of distinct purposes. Separation stands out
as the most pervasive feature. We use the term ``policy'' to describe the administrative
courses of actions which characterize a group of mechanisms in promoting or
preserving integrity. We acknowledge that not all of these mechanisms are automated,
but we believe that by including them we have given greater insight into what types of
controls need to be provided and the types of threats which must be countered by
automated integrity mechanisms. A significant number of these mechanisms serve to
support human-enforced integrity; thus, without humans involve in the process, these
mechanisms will not necessarily provide additional benefits. The costs and benefits of
research required to automate some of these mechanisms should be evaluated. All of
these mechanisms need to be examined in light of other protection goals, i.e.,
confidentiality, to ensure that any conflicting goals are identified and resolved prior
to the inclusion of these mechanisms into systems that need to satisfy multiple
protection goals.

The paper has provided an overview of several models and model
implementations (paper studies) of integrity. These models are still rather primitive
with respect to the range of coverage suggested by examining both data and systems
integrity. No model, on its own, supports all of the integrity policies that we have
identified. Of these models, the Clark and Wilson model now seems to be receiving the
most research attention. It is not a formal mathematical model, and its lack of
preciseness in its details still leaves many elements ambiguous. Although these
ambiguities need to be resolved and many aspects empirically proven, the Clark and
Wilson model provides a fresh and useful point of departure for examining issues of
integrity. The Biba model addresses a more fundamental concept, that of contamination.
While this model may seem initially appealing, it seems contrary to what is actually
occurring in data processing where most of the mechanisms we apply are meant to
increase the integrity of the data. Further, it does not seem to be practical or easily
implementable, i.e., the determination of labels for specific data and the subsequent
labelling operations of data items may be extremely difficult and of a much higher cost
than the value returned. The Goguen and Meseguer model is related to integrity by
the concept of non-interference, which can be used to model behaviors of active
entities and to show that actions are separate and non-interfering.

6.2 SIGNIFICANCE OF PAPER

By going beyond attempting to define integrity, the document provides material
that we believe will be useful to system designers, criteria developers, and to
individuals trying to gain a better understanding of the issues of data and systems
integrity. The study provides a framework and foundational material to continue the
efforts toward developing criteria for building products which preserve and promote

data and systems integrity. However, this study is only a beginning and remains
incomplete in terms of fully addressing the topic. Further principles should be
sought out. Additional mechanisms in the areas of fault tolerance, database
management, communications, and in specific application areas should be
described and analyzed.

The paper reinforces the realization that data and systems integrity are important
and necessary, and that they need to be addressed in a determined and methodical
manner. We conclude that there is a great deal known about certain aspects of data and
systems integrity and, in many cases, that there exists a history of experiences with
both the principles and the mechanisms. We also conclude that there are many things
yet to be learned with respect to assembling this experience and knowledge into
coherent systems, e.g., moving from manual mechanisms to automated mechanisms.
One of the main conclusions that can be drawn from this paper is that mechanisms can
be applied at various layers of system abstraction. This concept of layering needs to be
examined to determine what, if any, interfaces need to exist between mechanisms at
different system layers and what protocols need to exist within layers. IDA is
undertaking a follow-on study to address the allocation and layering of mechanisms.

Integrity criteria need to be written. For some aspects, we conclude that there is
sufficient understanding to write specific criteria, but for other aspects of such criteria,
more experience, research, debate, and proofs of concepts will be needed. We believe
that this partial knowledge should not delay the writing of criteria. Rather, we
recognize the need to establish a means to make the criteria, and thus the systems,
evolvable with respect to integrity protection. Establishing this means may require
more participation by systems vendors in the evolutionary development of integrity
criteria than there was in the development of confidentiality criteria. The key here is
to understand what is involved in designing systems for evolution so that criteria do not
unnecessarily stifle new system designs or new concepts for preserving or promoting
integrity.

6.3 FUTURE RESEARCH

The following studies are suggestive of those that should be undertaken to extend
and apply the principles, mechanisms, models, and model implementations that have
been presented in this paper.

Allocation Study

The understanding of layering and allocating the various integrity mechanisms
needs to be broadened. There are many questions that need to be addressed as part of
this understanding. For example, how should the various mechanisms be allocated
across the applications, operating systems, database management systems,
networking systems, and hardware bases? What is the basis for this allocation? What
are the interactions between and among layers? What are the concerns between
allocation and system evolution? What might one expect from a vendor's product as
a result of allocation? This study is critical to refining specifications for product-
oriented control objectives that will form the basis of product criteria.

Interface and Protocol Studies

Where there appears to be a need for interaction between mechanisms in different
system layers, the specific interfaces and communications protocol must be established.
These studies should examine current interfaces and develop new ones as appropriate.
They should design new or show how existing protocols can be used. These studies
should examine the efficiency and effectiveness of potential interfaces and protocols.
Where appropriate, these studies should recommend proofs of concept research.

Demonstration/Validation Studies

We need to have some worked examples to ensure that the arrangement of
mechanisms is workable, that interface and protocol concepts are valid, and that
criteria are testable. These studies should incorporate a variety of systems architectures
to preclude development of criteria with a single or limited focus.

Criteria Development Study

We need to begin to develop criteria in parallel with the protocol and
demonstration/validation studies. This effort should interact with these two areas in
receiving and providing direction. One major part of the criteria study should be form,
a second part should be scope and specific content, a third part should address the
evolution of criteria, and a final part should address the linkages of product criteria to
certification and accreditation of systems by using authorities.

REFERENCE LIST
[1] Abrams 1990

Abrams, Marshall D., Leonard J. La Padula, Kenneth W. Eggers, and In-
gred M. Olson. 1990. A Generalized Framework for Access Control: An
Informal Description. In Proceedings of the 13th National Computer Se-
curity Conference, 1-4 October 1990, Washington, D.C., 135-143. Gaith-
ersburg, MD: National Institute of Standards and Technology.

[2] Biba 1977
Biba, K.J. 1977. Integrity Considerations for Secure Computer Systems.
Bedford, MA: MITRE Corporation.

[3] Bishop 1979
Bishop, M. and L. Snyder. 1979. The Transfer of Information and Au-
thority in a Protection System. In Proceedings of the 7th Symposium
on Operating Systems Principles, 10-12 December 1979, Pacific Grove,
California, 45-54. New York: Association for Computing Machinery.

[4] Boebert 1985
Boebert, W.E. and R.Y. Kain. 1985. A Practical Alternative to Hierarchical
Integrity Policies. Proceedings of the 8th National Computer Security
Conference, 30 September-3 October 1985, Gaithersburg, Maryland, 18-27.
Gaithersburg, MD: National Bureau of Standards [now the National Insti-
tute of Standards and Technology].

[5] Boebert 1988
Boebert, W.E. 1988. Constructing an Infosec System Using LOCK Technolo-
gy. In Proceedings of the 11th National Computer Security Conference, 17-
20 October 1988, Baltimore, Maryland: Postscript, 89-95. Gaithersburg,
MD: National Bureau of Standards [now the National Institute of Stand-
ards and Technology].

[6] Boebert 1990
Boebert, W.E. 1990. Electronic communication to authors.

[7] Bonyun 1989
Bonyun, David A. 1989. On the Adequacy of the Clark-Wilson Defini-
tion of Integrity. In Report of the Invitational Workshop on Data Integri-
ty, January 25-27, 1989, Gaithersburg, Maryland, B.5B.5-9. Gaithersburg,
MD: National Institute of Standards and Technology.

[8] Branstad 1989
Branstad, Martha, Homayoon Tajalli, Frank Mayer, and David Dalva.
1989. Access Mediation in a Message Passing Kernel. In Proceedings of

the 1989 IEEE Computer Society Symposium on Security and Privacy,
May 1-3, 1989, Oakland, California, 66-72. Washington, D.C.: IEEE Com-
puter Society Press.

[9] Brewer 1989
Brewer, David F. C. and Michael J. Nash. 1989. The Chinese Wall Securi-
ty Policy. In Proceedings of the 1989 IEEE Computer Society Symposium
on Security and Privacy, May 1-3, 1989, Oakland, California, 206-214.
Washington, D.C.: IEEE Computer Society Press. Oakland, CA

[10] Chen 1989
Chen, Tom. 1989. Operating Systems and Systems-Group 1 Report. In
Report of the Invitational Workshop on Data Integrity, January 25-27,
1989, Gaithersburg, Maryland, 4.1-14.1-11. Gaithersburg, MD: National
Institute of Standards and Technology. NIST Special Publication 500-168.

[11] Clark 1987
Clark, D.D. and D.R. Wilson. 1987. A Comparison of Commercial and
Military Computer Security Policies. Proceedings of the IEEE Symposi-
um on Security and Privacy, 184-194, Oakland, CA.

[12] Clark 1989
Clark, David D. and David R. Wilson. 1989. Evolution of a Model for
Computer Integrity. In Report of the Invitational Workshop on Data In-
tegrity, January 25-27, 1989, Gaithersburg, Maryland, A.2-1A.2-13. Gaith-
ersburg, MD: National Institute of Standards and Technology. NIST
Special Publication 500-168.

[13] Courtney 1989
Courtney, Robert H. 1989. Some Informal Comments About Integrity
and the Integrity Workshop. In Report of the Invitational Workshop
on Data Integrity, January 25-27, 1989, Gaithersburg, Maryland, A.1-1A.1-
5.1. Gaithersburg, MD: National Institute of Standards and Technolo-
gy. NIST Special Publication 500-168.

[14] DOD 1985
Department of Defense. 1985. DoD Trusted Computer System Evalua-
tion Criteria. DoD 5200.28-STD. Washington, D.C.: U. S. Government
Printing Office.

[15] Eichin 1989
Eichin, Mark W. and Jon A. Rochlis. 1989. With Microscope and Tweez-
ers: An Analysis of the Internet Virus of November 1988. In Proceed-
ings of the 1989 IEEE Computer Society Symposium on Security and Pri-
vacy, May 1-3, 1989, Oakland, California, 326-343. Washington, D.C.:
IEEE Computer Society Press.

[16] Gligor 1987
Gligor, V.D., J.C. Huskamp, S.R. Welke, C.J. Linn, and W.T. Mayfield.
1987. Traditional Capability-Based Systems: An Analysis of Their Abili-
ty to Meet the Trusted Computer Security Evaluation Criteria. IDA Pa-
per P-1935, available as NTIS AD-B119 332. Alexandria, VA.

[17] Goguen 1982
Goguen, J.A. and J. Meseguer. 1982. Security Policies and Security Models.
Proceedings of the 1982 Berkeley Conference on Computer Security, 11-
20. Berkeley, CA.

[18] Gong 1989
Gong, Li. 1989. A Secure Identity-Based Capability System. In Proceed-
ings of the 1989 IEEE Computer Society Symposium on Security and
Privacy, May 1-3, 1989, Oak- land, California, 56-63. Washington, D.C.:
IEEE Computer Society Press.

[19] ISO 1990
International Standards Organization/International Electrotechnical Com-
mission Joint Technical Committee 1/Subcommittee 21 (ISO/IEC
JTC1/SC21). 1990. Information Technology-Security Frameworks for Open
Systems-Part 2: Authentication Framework. N 5281 (proposed Second
CD 10181-2).

[20] Johnson 1989
Johnson, Barry W. 1989. Design and Analysis of Fault-Tolerant Digital Sys-
tems. Reading, MA: Addison-Wesley.

[21] Jueneman 1989
Jueneman, Robert R. 1989. Integrity Controls for Military and Commer-
cial Applications, II. Falls Church, VA: Computer Sciences Corporation.
CSC/PR-89/3001.

[22] Karger 1984
Karger, Paul A. and Andrew J. Herbert. 1984. An Augmented Capability
Architecture to Support Lattice Security and Traceability of Access. In
Proceedings of the 1984 IEEE Symposium on Security and Privacy,
April 29-May 2, 1984, Oakland, California, 2-12. Silver Spring, MD:
IEEE Computer Society Press.

[23] Karger 1988
Karger, Paul A. 1988. Implementing Commercial Data Integrity with Se-
cure Capabilities. In Proceedings of the IEEE Symposium on Security
and Privacy, April 18-21, 1988, Oakland, California, 130-139. Washing-
ton, D.C.: IEEE Computer Society Press.

[24] Knight 1986
Knight, J.C., and N.G. Leveson. 1986. An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming. IEEE Trans-
actions on Software Engineering 12 (January): 96-109.

[25] Lee 1988
Lee, Theodore M.P. 1988. Using Mandatory Integrity to Enforce ``Com-
mercial'' Security. In Proceedings of the IEEE Symposium on Security
and Privacy, April 18-21, 1988, Oakland, California, 140-146. Washing-
ton, D.C.: IEEE Computer Society Press.

[26] Lipner 1982
Lipner, S.B. 1982. Non-Discretionary Controls for Commercial Applica-
tions. Proceedings of the IEEE Symposium on Security and Privacy, 2-10.
Oakland, CA

[27] Longley 1987
Longley, Dennis and Michael Shain. 1987. Data & Computer Security:
Dictionary of Standards, Concepts and Terms. New York: Stockton
Press.

[28] Mayfield 1991
Mayfield, Terry, John M. Boone, Stephen R. Welke. 1991. Integrity-Ori-
ented Control Objectives: Proposed Revisions to the Trusted Compu-
ter Systems Evaluation Criteria (TCSEC), DoD 5200.28-STD. Alexandria,
VA: Institute for Defense Analyses. IDA Document D-967.

[29] NCSC 1988
National Computer Security Center (NCSC). 1988. Glossary of Compu-
ter Security Terms. Washington, D.C.: U.S. Government Printing Office.

[30] Outposts 1989
Air Safety: Is America Ready to `Fly by Wire'? The Washington Post
April 2, 1989. Outposts section: C3.

[31] Rivest 1978
Rivest, R.L., A. Shamir, and L. Adleman. 1978. A Method of Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of
the ACM 21, 120-126 (February).

[32] Roskos 1984
Roskos, J.E. 1984. Data Movement, Naming, and Ambiguity. Nashville,
TN: Vanderbilt University, Department of Computer Science. Technical
Report CS-84-05.

[33] Saltzer 1975

Saltzer, J.H. and M.D. Schroder. 1975. The Protection of Information in
Computer Systems. Proceedings of the IEEE 63, (September): 1278-1308.

[34] Saltzer 1977
Saltzer, J.H. 1977. Naming and Binding of Objects. In Operating Sys-
tems: An Advanced Course, 99-208. New York: Springer-Verlag.

[35] Schaefer 1989
Schaefer, M., W. C. Barker, and C. P. Pfleeger. 1989. Tea and I: An Al-
lergy. In Proceedings of the 1989 IEEE Computer Society Symposium on
Security and Privacy, May 1-3, 1989, Oakland, California, 178-182.
Washington, D.C.: IEEE Computer Society Press.

[36] Seecof 1989
Seecof, M. and R. Hoffman. 1989. A320/MD-11 F-B-W differ on pilot au-
thority. Electronic posting to the Forum on Risks to the Public in Comput-
ers and Related Systems. Vol. 9, Issue 4 (July 13).

[37] Shockley 1988
Schockley, W.R. 1988. Implementing the Clark/Wilson Integrity Policy
Using Current Technology. In Proceedings of the 11th National Com-
puter Security Conference, 17-October 1988, Baltimore, Maryland, 29-37.
Gaithersburg, MD: National Bureau of Standards [now the National Insti-
tute of Standards and Technology].

[38] Steiner 1988
Steiner, Jennifer, Clifford Neuman, Jeffrey I. Schiller. 1988. Kerberos: An
Authentication Service for Open Network Systems. Cambridge, MA: Mas-
sachusetts Institute of Technology.

[39] Struble 1975
Struble, George E. 1975. Assembler Language Programming: The IBM
System/360 and 370. Reading, MA: Addison-Wesley.

[40] Sutherland 1986
Sutherland, David. 1986. A Model of Information. In Proceedings of the
9th National Computer Security Conference, 15-18 September 1986,
Gaithersburg, Maryland, 175-183. Gaithersburg, MD: National Bureau
of Standards [now the National Institute of Standards and Technology].

[41] Webster 1988
Webster's Ninth New Collegiate Dictionary. 1988. Springfield, MA:
Merriam-Webster, Inc.

APPENDIX : GENERAL INTEGRITY PRINCIPLES
Several general security concepts should be borne in mind while considering the
mechanisms described in Section 4. These concepts are based primarily on a paper
by Jerome Saltzer and Michael Schroeder which has formed the basis for many of the
ideas in later computer security work, including the TCSEC. This appendix is intended
to help give a perspective to the very diverse set of mechanisms reviewed in Section 4.

In their 1975 paper, ``The Protection of Information in Computer Systems,'' Saltzer
and Schroeder address a number of issues related to computer security [Saltzer
1975]. While the focus of the paper was not exclusively integrity, many of the ideas and
concepts presented in that paper relate to current integrity issues. In particular, the
authors discuss ``Functional Levels of Information Protection'' and ``Design Principles,''
which will be reviewed in this appendix. In addition to being applicable to integrity,
these principles relate directly to many concepts in the TCSEC. This paper compiles
and draws on a large amount of early material dealing with computer security.
References to those sources will not be noted here, but can be found in the original
report.

1 TRADITIONAL DESIGN PRINCIPLES

The design principles presented by Saltzer and Schroeder are intended to reduce
design and implementation flaws which lead to unauthorized disclosure,
modification, or denial of system resources. The authors emphasize that these
principles should not be taken as absolute rules, but that violations of the principles
should be taken as potential sources of trouble and therefore should not be
undertaken lightly. These principles tend to reduce both the number and severity of
flaws.

1.1 ECONOMY OF MECHANISM

This principle states that the design, for all aspects of the system and especially for
protection mechanisms, should be kept as simple and small as possible. The rationale
behind this principle is that techniques such as code verification are required to
discover design and implementation flaws which occur only under exceptional
conditions. Such techniques are effective only if the design is simple and the actual code
is minimized as much as possible.

1.2 FAIL-SAFE DEFAULTS

This principle asserts that access decisions should be based on permission rather
than exclusion. This equates to the condition in which lack of access is the default, and
the ``protection scheme'' recognizes permissible actions rather than prohibited actions.
The authors mention that decisions based on exclusion present the wrong
``psychological base'' for a secure system. Also, failures due to flaws in exclusion-based
systems tend to grant (unauthorized) permission, whereas permission-based systems
tend to fail safe with permission denied.

1.3 COMPLETE MEDIATION

This principle stresses that ``every access request to every object must be checked for
authority.'' This requirement forces a global perspective for access control, during all
functional phases (e.g. normal operation, maintenance). Also stressed are reliable
identification of access request sources and reliable maintenance of changes in
authority.

1.4 OPEN DESIGN

This principle stresses that secrecy of design or the reliance on the ignorance of
(malicious) users is not a sound basis for secure systems. Open design allows for open
debate and inspection of the strengths, or origins of a lack of strength, of that particular
design. Secrecy, a strong protection mechanism in itself, can be implemented through
the use of passwords and keys. Secrecy implemented through the use of these objects is
much easier to maintain than secrecy of design, where disclosure permanently effects
system security. By comparison, passwords and keys are easily changed if disclosed,
restoring security of the system.

1.5 SEPARATION OF PRIVILEGE

This principle asserts that protection mechanisms where two keys (held by different
parties) are required for access are stronger mechanisms than those requiring only one
key. The rationale behind this principle is that ``no single accident, deception, or
breach of trust is sufficient'' to circumvent the mechanism. In computer systems the
separation is often implemented as a requirement for multiple conditions to be met
before access is allowed.

1.6 LEAST PRIVILEGE

This principle specifies that ``every program and user of the system should operate
using the least set of privileges necessary to complete the job.'' One effect of this
principle is that the potential for damage caused by an accident or an error is limited.
This principle addresses the need for minimal interactions between privileged
programs and the need to prevent improper uses of privilege. An example of the results
of not applying the least privilege principle was seen in the November, 1988 Internet
``Virus'' [Eichin 1989]. One of the ways in which this virus gained access to its host
systems was by exploiting the ability of the UNIX ``sendmail'' Simple Mail Transfer

Protocol (SMTP) server to execute arbitrary programs. The ability to execute arbitrary
programs was not necessary to the operation of SMTP and, under the least privilege
principle, should not have been provided. Its unnecessary presence gave an extra
privilege, the execution of arbitrary programs on the remote host, to users of sendmail,
and thus allowed the ``virus'' to exploit this privilege to compile and execute its initial
components on remote systems it wished to ``infect.''

1.7 LEAST COMMON MECHANISM

This principle requires the minimal sharing of mechanisms either common to
multiple users or ``depended upon by all users.'' Sharing represents possible
communications paths between subjects which can be used to circumvent security
policy. Global mechanisms must be adequately secure in terms of the user with the
strictest requirements on the system; this encourages non-global mechanisms.

1.8 PSYCHOLOGICAL ACCEPTABILITY

This principle encourages the routine and correct use of protection mechanisms by
making them easy to use, thus giving users no reason to attempt to circumvent them.
Also addressed is the need for the supplied mechanisms to match the user's own image
of his protection goals. This requirement prevents the user from attempting to
implement his protection goals in an unnatural or arcane manner using poorly fitting
mechanisms, since such an approach would be more prone to error.

2 ADDITIONAL DESIGN PRINCIPLES

Saltzer and Schroeder present the following principles as being employed in the area
of physical security. They observe that these principles do not apply as well to
computer systems as do the principles discussed earlier. We have found that this is
similarly the case for some of the integrity mechanisms we have examined.

2.1 WORK FACTOR

This principle permits the use of mechanisms that are vulnerable to systematic
attack, because the cost or amount of work involved in the attack is out of proportion to
the value of the protected objects. It is a weaker mechanism by definition, since many
alternate protection mechanisms are not vulnerable to systematic attacks, but can
only be defeated by a hardware failure, design error, etc. Besides this inherent
vulnerability, another problem is that the actual work factor which is implemented
may be hard to determine exactly or may sometimes be reduced through
automated attacks. In particular, a mechanism that may give an intolerable work
factor in a manual system may be quite easy to attack on a computer system, since the
computer, being designed to perform difficult, repetitive tasks, will perform the
difficult work for the attacker. Thus the computer can often be used as a tool to assist
in an attack upon its own security mechanisms.

2.2 COMPROMISE RECORDING

This principle calls for the accurate reporting of information compromise as a
substitute for relying on more complex, preventive mechanisms. This principle is not
as strong in computer systems, since the reporting mechanism itself must be protected
from tampering and interference, otherwise violations may not be recorded. If the
reporting mechanism is co-resident on the system being protected, an intruder may be
able to gain access to the reporting mechanism at the same time the intruder gains
access to other resources.

3 FUNCTIONAL CONTROL LEVELS

Saltzer and Schroeder also offer a categorization of protection functionality, or ``the
kinds of access control that can be expressed naturally and enforced.'' This func-
tionality is the result of design decisions, with higher levels of functionality being
harder to attain in implementation. The authors also discuss a concept which is
independent of the level of functionality: dynamics of use. This term refers to the way
in which access privileges are specified, and how the system allows modification of that
specification. They mention that while static expressions of protection are (relatively)
easy to implement, dynamic specification (requests to change the specification which are
made by executing programs) can introduce considerable complexity into the system.

Two problems associated with the dynamics of use are access determination and
access revocation. The authors also mention that while the focus of their paper is on
protection concerns which are internal to the computer, some functionality may be
added through external protection methods. A short summary of the authors'
categorization follows.

3.1 UNPROTECTED SYSTEMS

These systems are not stressed, but they are worth mentioning because they were the
most common type then in use (1975). Essentially, these systems have no inherent,
effective means of preventing any user from access to all information on the system.
Examples are batch data processing systems and most popular PC operating systems.
This is of concern in the light of the widespread use of PCs today, including analogous
machines in the tactical systems environment. These systems offer ``mistake-
prevention features,'' but no real security. Such features just ensure that breaches of
control are intentional rather than accidental.

3.2 ALL-OR-NOTHING SYSTEMS

The main feature of these systems is the isolation of user environments and
information. This isolation is sometimes moderated by such features as a public library
mechanism, with users able to contribute information to that library. Still, the
emphasis is on all users having equal access privileges, and all users have a view of the
system as if it were a private machine.

3.3 CONTROLLED SHARING

A significant rise in complexity is required in these systems, which control access to
each data item. Access control lists are a typical mechanism which enforces
controlled sharing. Although conceptually simple, the control mechanisms tend to be
intricate and difficult in implementation. Generic access types (e.g., read, write,
execute) tend to be system defined to allow specification of user access privileges.

3.4 USER-PROGRAMMED SHARING CONTROLS

These systems allow users to restrict access to files in non-standard ways (as
defined by the system). For example, time constraints may be imposed upon
certain accesses, or multiple users' privileges (or actions) may be required for other
accesses. These systems often implement the concept of protected objects and
subsystems (emphasis in original), which effectively confines all accesses to the
protected objects to programs within the protected subsystems. Entry to the subsystem
is confined to specified entry points, allowing users to develop any programmable form
of access control for objects created by the user. Other concepts include content-based
and context-based (access) decision policies.

3.5 LABELLING INFORMATION

The previous three types of systems address the conditions under which an
executing program is allowed access to information. In addition there are other
systems which attempt to bring about continuing access control after the initial access
decision. These systems also prevent or control the propagation of access privileges. A
typical technique employed by these systems is the use of labels on data objects, which
are used by the protection mechanism(s) to make access decisions. The authors state
that such systems are rare and incomplete. This is still true today, but not to the same
extent as when the paper was published.

ACRONYMS
ACF2 Access Control Facility 2
ACL Access Control List
AIS Automated Information Systems
C Certification
CDI Constrained Data Item
CIC Combat Information Center
CPU Central Processing Unit
DBMS Database Management System
DDT Domain Definition Table
DNA Deoxyribonucleic Acid
DoD Department of Defense
DTT Domain Transition Table
E Enforcement
I&A Identification & Authentication
I/O Input/Output
IC Integrated Circuit
ICAP Identity-based Capability
ID Identification or Identifier
INFOSEC Information Security
ISO International Standards Organization
IVP Integrity Verification Procedures
LED Light Emitting Diode
LOCK Logical Coprocessor Kernel
MMU Memory Management Unit
NCSC National Computer Security Center
PC Personal Computer
RACF Resource Access Control Facility
ROM Read-Only Memory
SAT Secure Ada Target
SCAP Secure Capability
SMTP Simple Mail Transfer Protocol
TCB Trusted Computing Base
TCSEC Trusted Computer System Evaluation Criteria

TOP Tagged Object Processor
TP Transformation Procedure
UDI Unconstrained Data Item

GLOSSARY
abstract data type. A mechanism which associates a set of permissible values and
operations with an identified class of objects. See type.

access control list. A special case of access control tuples, where the specification of
access to an object is implied by grouping all subject and permitted operation
information into a list, and attaching the list directly to the object.

access deterrence. A design principle for security mechanisms which is based on a
user's fear of detection of violations of security policies rather than absolute prevention
of violations.

access time minimization. A risk-reducing principle that attempts to avoid
prolonging access time to specific data or to the system beyond what is needed to carry
out requisite functionality.

access triple. A type of access control specification proposed in [Clark 1987] in which a
user, program, and data item are listed for each allowed operation.

accountability. A principle which calls for holding individuals responsible for their
actions. In automated systems, this is enabled through Identification and
Authentication (I&A), the specification of authorized actions, and the auditing of the
user's activity.

actor. A term used to describe an object in object-oriented systems, where the object
consists of both data and the operations which manipulate the data contents.

agent. A term used to denote a user or an automated surrogate acting on behalf of a
user.

alarm. A signal that warns or alerts [Webster 1988].

anticipation. A technique related to polling, in which the resource detects that it has not
been accessed by an active subject within an expected interval.

atomicity. A property of a transaction in which each data item involved is either
transformed from one unimpaired state to a new unimpaired state, or the initial
unimpaired state is restored if the transaction fails.

authorization. The principle whereby allowable actions are distinguished from those
which are not.

authorization override. The ability to take a definite action under exceptional
circumstances to circumvent normal controls. authorized actions. The set of actions
which a subject is allowed to perform.

availability. In computer security, availability denotes the goal of ensuring that
information and information processing resources both remain readily accessible to
their authorized users.

check digit. A checksum calculated on each digit of a numeric string (e.g., parity

bits).

brevity codes. A shortened form of standardized messages which reduces the amount
of input required by valid users while often hiding the message type, or other
information obtained from the user interface, from unauthorized users.

capabilities. A protected identifier that both identifies the object and specifies the
access rights to be allowed to the accessor who possesses the capability. In a capability-
based system, access to protected objects such as files is granted if the would-be
accessor possesses a capability for the object [NCSC 1988].

category. A restrictive label that has been applied to classified or unclassified data as
a means of increasing the protection of the data and further restricting access to the data
[NCSC 1988].

chained checksum. A checksum technique in which the hashing function is a function
of data content and previous checksum values.

checksum. A numeric value which is computed (by some particular algorithm) based
on the entire contents of a data object.

Chinese Wall model. A model presented in [Brewer 1989] to address confidentiality
policies in the context of dynamically changing access permissions.

classification. (1) In data security, a determination that information requires, in the
interest of national security, a specific degree of protection against unauthorized
disclosure together with a designation signifying that such a determination has been
made [Longley 1987]. (2) Systematic arrangement in groups or categories according to
established criteria [Webster 1988].

conditional authorization. A type of authorization which is activated only at the
occurrence of conditioning events.

conditional enabling. A type of control in which actions are physically disabled
unless an authorization for the action is granted.

conditioning events. Events which are specified as being sufficient to invoke a
reaction from a conditionally authorized subject.

confidentiality. The concept of holding sensitive data in confidence, limited to an
appropriate set of individuals or organizations [NCSC 1988].

configuration management. The management of security features and assurances
through control of changes made to a system's hardware, software, firmware,
documentation, test, test fixtures and test documentation throughout the development
and operational life of the system [NCSC 1988].

constraint. The state of being checked, restricted, or compelled to avoid or perform
some action [Webster 1988].

cryptographic checksum. A checksum computed by an algorithm which produces a
unique value for each possible data value of the object.

cryptography. The principles, means and methods for rendering information
unintelligible, and for restoring encrypted information to intelligible form [NCSC 1988].

data attribute checks. A verification that data has particular attributes.

data compression. Techniques which reduce the size of data objects by encoding
redundancies in the data to a more compact form.

data integrity. The attribute of data relating to the preservation of (1) its meaning and
completeness, (2) the consistency of its representation(s), and (3) its correspondence to
what it represents. See integrity.

data minimization. A generalization of the principle of variable minimization, in
which the standardized parts of a message or data are replaced by a much shorter code,
thereby reducing the risk of erroneous actions or improper use.

data movement primitives. A method of controlling shared objects by providing
primitive operations which (logically) move the shared object into private addressing
space when being accessed, thus preventing simultaneous access to the object by
another process.

denial of service. Any action or series of actions that prevent any part of a system
from functioning in accordance with its intended purpose. This includes any action
that causes unauthorized destruction, modification, or delay of service [NCSC 1988].

digital signature. In authentication, a data block appended to a message, or a complete
encrypted message, such that the recipient can authenticate the message contents and/
or prove that it could only have originated with the purported sender. The digital
signature is a function of (1) the message, transaction or document to be signed (2)
secret information known only to the sender and (3) public information employed in the
validation process [Longley 1987].

discrete value checks. A verification that data has either certain permissible values or
does not have other restricted values, out of a wider set of possible values.

discretionary access control. A means of restricting access to objects based on the
identity and need-to-know of the user, process and/or groups to which they belong.
The controls are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to any other
subject [NCSC 1988].

domain. The unique context (e.g., access control parameters) in which a program is
operating. In effect, the set of objects that a subject has the ability to access [NCSC
1988].

duplication protocol. A communications protocol which duplicates the data being
sent in order to provide fault tolerance.

duty. A required task, conduct, service, and/or function that constitute what one must
do and the manner in which it should be done.

dynamics of use. Pertaining to the way in which access privileges are specified, and

how the system allows modification of that specification [Saltzer 1975].

embedded system. A system that performs or controls a function, either in whole or in
part, as an integral element of a larger system or subsystem [NCSC 1988].

encapsulation. The principle of structuring hardware and software components such
that the interface between components is clean and well-defined, and that exposed
means of input, output, and control other than those that exist in the interface do not
exist.

encryption. See cryptography.

error correcting code. A technique in which the information content of the error-control
data of a data unit can be used to correct errors in the message data of that unit.

error correction. Techniques which attempt to recover from detected data transmission
errors.

event constraint. A type of constraint in which the active agent must perform an action
or set of actions within a specified bound of time.

fault tolerance. The ability of a system to continue to perform its tasks after the
occurrence of faults [Johnson 1989].

gate. An encapsulation implementation technique which provides access between
domains only via specific locations (the gates) which provide a well-defined,
controlled interface.

handshaking protocol. Techniques in which two or more communicating entities
exchange information about successful or unsuccessful reception of data for error
control.

hierarchical supervision. A technique in which integrity critical actions are handled or
controlled by a more trusted or more experienced user while less critical actions are
delegated to subordinates.

identity. The sameness in all that constitutes the objective reality of a thing: oneness;
and is the distinguishing character of a thing: individuality [Webster 1988].

individuation. The determination of the individual in the general [Webster 1988].

integrity. (1) A subgoal of computer security which pertains to ensuring that data
continues to be a proper representation of information, and that information
processing resources continue to perform correct processing operations. (2) A subgoal of
computer security which pertains to ensuring that information retains its original level
of accuracy. (3) Sound, unimpaired or perfect condition [NCSC 1988]. See data integrity,
system integrity.

label. Written or printed matter accompanying an article to furnish identification or
other information [Webster 1988]. See security label.

least privilege. The principle that requires that each subject be granted the most
restrictive set of privileges needed for the performance of authorized tasks. The appli-
cation of this principle limits the damage that can result from accident, error, or
unauthorized use [NCSC 1988].

mandatory access control. A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the objects and the
formal authorization (i.e., clearance) of subjects to access information of such sensitivity
[NCSC 1988].

minimization. A risk-reducing principle that supports integrity by containing the
exposure of data or limiting opportunities to violate integrity.

minimizing target value. A risk-reducing practice which stresses the reduction of
potential losses incurred due to a successful attack, and/or the reduction of benefits
an attacker might receive in carrying out such an attack.

monitor. To watch, observe, or check-especially for a special purpose [Webster 1988].

mutual exclusion. The guarantee of exclusive access to a given data item for the
purpose of completing a critical action in order to avoid interference by other
entities attempting to simultaneously access the same data item.

N-person control. A method of controlling the actions of subjects by distributing a
task among more than one (N) subjects.

noninterference. A concept proposed in [Goguen 1982] whereby a member of
particular class cannot initiate actions that affect what is observed by members of a
different class.

non-reversible action. A type of action which supports the principle of accountability
by preventing the reversal and/or concealment of activity associated with sensitive
objects.

notarization. The authentication of an object which is being transferred between two
parties by an independent entity.

object. A passive entity that contains or receives information. Access to an object
potentially implies access to the information it contains. Examples of objects are
records, blocks, pages, segments, files, directories, directory trees, and programs, as
well as bits, bytes, words, fields, processors, video displays, keyboards, clocks, printers,
and network nodes [NCSC 1988].

obligation. The binding, constraining, or commitment of an individual or an active
agent to a course of action.

privilege. (1) In operations, pertaining to a program or user and characterizing the
type of operation that can be performed [Longley 1987]. (2) An authorization to
perform an action.

privilege states. The states of a system in which a normally prohibited set of actions
are allowed. Typically, use of privilege states is limited to ``trusted processes'' which
are known or believed to use the normally prohibited actions only in specific,
controlled ways. See protection ring.

process sequencing. A technique which controls the order in which specific tasks or
subtasks are completed.

protection ring. One of a hierarchy of privileged modes of a system that gives certain
access rights to user programs and processes authorized to operate in a given mode.

protocol. (1) A code prescribing strict adherence to correct procedures. (2) In
telecommunications, it is a set of characters at the beginning and end of a message
that enables communications between computers at various abstract service layers.
These layers establish peer-entities between the communicating systems.

range checks. A verification that data is within a certain range of values.

read. A fundamental operation that results only in the flow of information from an
object to a subject [NCSC 1988].

receive. A communications-oriented generalization of the read operation.

redundancy. (1) The part of a message that can be eliminated without loss of essential
information. (2) The use of duplicate components to prevent failure of an entire system
upon failure of a single component.

responsibility. Being answerable for what one does.

reversible action. An action that, once initiated, can be undone leaving the object being
acted upon in a state as if the action had never been initiated.

risk reduction. The function of reducing one or more of the factors of risk, e.g., value
at risk, vulnerability to attack, threat of attack, protection from risk.

role. A distinct set of operations required to perform some particular function.

rotation of duty. A method of reducing the risk associated with a subject performing a
(sensitive) task by limiting the amount of time the subject is assigned to perform the
task before being moved to a different task.

routine variation. The risk-reducing principle which underlies techniques which
reduce the ability of potential attackers to anticipate scheduled events in order to
minimize associated vulnerabilities.

run-to-run totals. Checksums which are applied to sequenced data, in which the
hashing function is made a function of the previously seen data.

security label. A piece of information that represents the security level of an object
[NCSC 1988].

security model. A formal presentation of the security policy enforced by the system. It
must identify the set of rules and practices that regulate how a system manages, pro-
tects, and distributes sensitive information [NCSC 1988].

security policy. The set of laws, rules, and practices that regulate how an organization
manages, protects, and distributes sensitive information [NCSC 1988].

send. A communications-oriented generalization of the write operation.

sensitive information. Any information, the loss, misuse, modification of, or
unauthorized access to, could affect the national interest or the conduct of Federal
programs, or the privacy to which individuals are entitled under Section 552a of Title 5,
U. S. Code, but that has not been specifically authorized under criteria established by an
Executive order or an act of Congress to be kept classified in the interest of national
defense or foreign policy [NCSC 1988].

separation. An intervening space established by the act of setting or keeping apart.

separation of duty. The partitioning of tasks and associated privileges among different
users or subjects, or to different, mutually-exclusive roles associated with a single
user.

separation of name spaces. A technique of controlling access by precluding sharing-
names given to objects are only meaningful to a single subject and thus cannot be
addressed by other subjects.

serializability. Having the capability to consecutively order all actions in a logical
transaction schedule.

strong typing. The application of type enforcement during all operations upon
instances of abstract data types within a system or program.

summary integrity check. A method for checking the correct-

ness of data by comparing it with a ``summary'' of the data.

See checksum.

subject. An active entity, generally in the form of a person, process, or device, that
causes information to flow among objects or changes the system state. Technically, a
process/domain pair [NCSC 1988].

supervisory control. A method of controlling particular

actions of a subject by making those actions dependent on

the authorization of a supervisor.

system integrity. The attribute of a system relating to the successful and correct
operation of computing resources. See integrity.

tactical system. A system which is used as an integral part of or in support of a
weapon(s) system.

theft of service. The unauthorized use of information processing resources. time
stamping. The method of including an unforgeable time stamp with object structures,
used for a variety of reasons such as sequence numbering and expiration of data.

timeouts for inactivity. The setting of time limits for either specific activities or for
non-activity. See anticipation.

Tranquillity Principle. A requirement that changes to an object's access control
attributes be prohibited as long as any subject has access to the object.

transmittal list. A list, stored and transmitted with particular data items, which
identifies the data in that batch and can be used to verify that no data are missing.

Trojan horse. A computer program with an apparently or actually useful function
that contains additional (hidden) functions that surreptitiously exploit the
legitimate authorizations of the invoking process to the detriment of security or
integrity [NCSC 1988].

trusted computing base (TCB). The totality of protection mechanisms within a
computer system, including hardware, firmware, and software, the combination of
which is responsible for enforcing a security policy. A TCB consists of one or more
components that together enforce a unified security policy over a product or system.
The ability of a TCB to enforce correctly a unified security policy depends solely on
the mechanisms within the TCB and on the correct input by system administrative
personnel of parameters (e.g., a user's clearance level) related to the security policy
[NCSC 1988].

trusted path. A mechanism by which a person at a terminal can communicate directly
with the TCB [trusted computing

base]. This mechanism can only be activated by the person or the TCB and cannot be
imitated by untrusted software [NCSC 1988].

two-phase commit protocol. A mechanism which requires the logging of a record for
all actions to ensure that any transaction either completely succeeds, or may be
rolled back so that effectively no changes have occurred.

type. In programming, pertaining to the range of values and valid operations associated
with a variable [Longley 1987].

type enforcement. The enforcement of allowable operations on an instance of an
abstract data type, and on the permissible values that instance may take. See strong
typing.

unconditional authorization. A type of authorization which enables immediate action
on the part of the authorized subject.

value checks. A precursor to type enforcement mechanisms, value checks are checks
against a definition of meaningful values through explicit enumeration and/or
exclusion.

variable minimization. A method of reducing the number of variables to which a
subject has access to the minimum required, thereby reducing the risk of malicious or
erroneous actions by that subject. This concept can be generalized to include data
minimization.

version control. A mechanism which allows distinct versions of an object to be
identified and associated with independent attributes in a well-defined manner.
virus. A self-propagating Trojan horse, composed of a mission component, a trigger
component, and a self-propagating component [NCSC 1988].

well-formed transaction. Proposed in [Clark 1987] as a mechanism to prevent a user
from manipulating a data item arbitrarily, but rather in constrained ways that preserve
or ensure the internal consistency of data.

wholeness. Having all its parts or components-includes both the sense of unimpaired
condition (i.e., soundness) and being complete and undivided (i.e., completeness).

write. A fundamental operation that results only in the flow of information from a
subject to an object [NCSC 1988].

X.25. An International Organization for Standards (ISO) telecommunications standard
for the network and data link levels of a communications network.

