
Page 1

NCSC-TG-014-89
Library No. S-231,308

 FOREWORD

This publication, Guidelines for Formal Verification Systems, is issued by
the National Computer Security Center (NCSC) under the authority and in
accordance with Department of Defense (DoD) Directive 5215.1, "Computer
Security Evaluation Center." The guidelines defined in this document are
intended for vendors building formal specification and verification systems
that trusted system developers may use in satisfying the requirements of the
Department of Defense Trusted Computer System Evaluation Criteria (TCSEC), DoD
5200.28-STD, and the Trusted Network Interpretation of the TCSEC.

As the Director, National Computer Security Center, I invite your
recommendations for revision to this technical guideline. Address all
proposals for revision through appropriate channels to the:

National Computer Security Center
9800 Savage Road
Fort George G. Meade, MD, 20755-6000,
Attention: Chief, Technical Guidelines Division.

Patrick R. Gallagher, Jr. 1 April 1989
Director
National Computer Security Center

Page 2

 ACKNOWLEDGMENTS

The National Computer Security Center expresses appreciation to Barbara
Mayer and Monica McGill Lu as principal authors and project managers of this
document. We recognize their contribution to the technical content and
presentation of this publication.

We thank the many individuals who contributed to the concept, development, and
review of this document. In particular, we acknowledge: Karen Ambrosi, Tom
Ambrosi, Terry Benzel, David Gibson, Sandra Goldston, Dale Johnson, Richard
Kemmerer, Carl Landwehr, Carol Lane, John McLean, Jonathan Millen, Andrew
Moore, Michele Pittelli, Marvin Schaefer, Michael Sebring, Jeffrey Thomas, Tom
Vander-Vlis, Alan Whitehurst, James Williams, Kimberly Wilson, and Mark
Woodcock. Additionally, we thank the verification system developers and
the rest of the verification community who helped develop this document.

Page 3

TABLE OF CONTENTS

FOREWORD i
ACKNOWLEDGMENTSii
PREFACE iv
1. INTRODUCTION 1

1.1 PURPOSE 1
1.2 BACKGROUND 1
1.3 SCOPE 2

2. EVALUATION APPROACH 3
2.1 EVALUATION OF NEW SYSTEMS 3
2.2 REEVALUATION FOR ENDORSEMENT 5
2.3 REEVALUATION FOR REMOVAL 6
2.4 BETA VERSIONS 7

3. METHODOLOGY AND SYSTEM SPECIFICATION 8
3.1 METHODOLOGY 8
3.2 FEATURES 9
3.2.1 Specification Language 9
3.2.2 Specification Processing 10
3.2.3 Reasoning Mechanism 11
3.3 ASSURANCE, SOUNDNESS, AND ROBUSTNESS 12
3.4 DOCUMENTATION 14

4. IMPLEMENTATION AND OTHER SUPPORT FACTORS 15
4.1 FEATURES 15
4.1.1 User Interface 15
4.1.2 Hardware Support 16
4.2 ASSURANCE 17
4.2.1 Configuration Management 17
4.2.2 Support and Maintenance 19
4.2.3 Testing 19
4.3 DOCUMENTATION 19

5. FUTURE DIRECTIONS 23
APPENDIX A: CONFIGURATION MANAGEMENT 25
GLOSSARY 28
BIBLIOGRAPHY 35

Page 4

 PREFACE

One of the goals of the NCSC is to encourage the development of production-
quality verification systems. This guideline was developed as part of the
Technical Guideline Program specifically to support this goal.

Although there are manual methodologies for performing formal specification
and verification, this guideline addresses verification systems that provide
automated support.

Throughout the document, the term developer is used to describe the
developer of the verification system. The term vendor is used to describe the
individual(s) who are providing support for the tool. These individuals may
or may not be the same for a particular tool.

Page 5

1. INTRODUCTION

The principal goal of the National Computer Security Center (NCSC) is to
encourage the widespread availability of trusted computer systems. In support
of this goal the DoD Trusted Computer System Evaluation Criteria (TCSEC) was
created, against which computer systems could be evaluated. The TCSEC was
originally published on 15 August 1983 as CSC-STD-001-83. In December 1985
the DoD modified and adopted the TCSEC as a DoD Standard, DoD 5200.28-STD. [1]

1.1 PURPOSE

This document explains the requirements for formal verification systems that
are candidates for the NCSC's Endorsed Tools List (ETL). [5] This document is
primarily intended for developers of verification systems to use in the
development of production-quality formal verification systems. It explains
the requirements and the process used to evaluate formal verification
systems submitted to the NCSC for endorsement.

1.2 BACKGROUND

The requirement for NCSC endorsement of verification systems is stated in
the TCSEC and the Trusted Network Interpretation of the TCSEC (TNI). [4]
The TCSEC and TNI are the standards used for evaluating security controls
built into automated information and network systems, respectively. The TCSEC
and TNI classify levels of trust for computer and network systems by
defining divisions and classes within divisions. Currently, the most
trusted class defined is A1, Verified Design, which requires formal design
specification and formal verification. As stated in the TCSEC and TNI, "...
verification evidence shall be consistent with that provided within the
state of the art of the particular Computer Security Center-endorsed formal
specification and verification system used." [1]

Guidelines were not available when the NCSC first considered endorsing
verification systems. The NCSC based its initial endorsement of
verification systems on support and maintenance of the system, acceptance
within the verification community, and stability of the system.

1.3 SCOPE

Any verification system that has the capability for formally specifying and
verifying the design of a trusted system to meet the TCSEC and TNI A1 Design
Specification and Verification requirement can be considered for placement
on the ETL. Although verification systems that have capabilities beyond
design verification are highly encouraged by the NCSC, this guideline
focuses mainly on those aspects of verification systems that are sufficient
for the design of candidate A1 systems.

The requirements described in this document are the primary consideration in
the endorsement process. They are categorized as either methodology and
system specification or implementation and other support factors. Within each

Page 6

category are requirements for features, assurances, and documentation.

The requirements cover those characteristics that can and should exist in
current verification technology for production-quality systems. A production-
quality verification system is one that is sound, user-friendly, efficient,
robust, well documented, maintainable, developed with good software
engineering techniques, and available on a variety of hardware. [2] The
NCSC's goal is to elevate the current state of verification technology to
production quality, while still encouraging the advancement of research in the
verification field.

Since the NCSC is limited in resources for both evaluation and support of
verification systems, the ETL may reflect this limitation. Verification
systems placed on the ETL will either be significant improvements to systems
already on the list or will provide a useful approach or capability that the
currently endorsed systems lack.

This guideline was written to help in identifying the current needs in
verification systems and to encourage future growth of verification
technology. The evaluation process is described in the following section.
Verification systems will be evaluated against the requirements listed in
sections 3 and 4. Section 5 contains a short list of possibilities for next-
generation verification systems. It is not an all-encompassing list of
features as this would be counterproductive to the goals of research.

2. EVALUATION APPROACH

A formal request for evaluation of a verification system for placement on
the ETL shall be submitted in writing directly to:

National Computer Security Center
ATTN: Deputy C

 (Verification Committee Chairperson)
9800 Savage Road
Fort George G. Meade, MD 20755-6000

Submitting a verification system does not guarantee NCSC evaluation or
placement on the ETL.

The developers shall submit a copy of the verification system to the NCSC
along with supporting documentation and tools, test suites, configuration
management evidence, and source code. In addition, the system developers
shall support the NCSC evaluators. For example, the developers shall be
available to answer questions, provide training, and meet with the
evaluation team.

There are three cases in which an evaluation can occur: 1) the evaluation
of a new verification system being considered for placement on the ETL, 2) the
reevaluation of a new version of a system already on the ETL for placement
on the ETL (reevaluation for endorsement), and 3) the reevaluation of a system
on the ETL being considered for removal from the ETL (reevaluation for
removal).

Page 7

2.1 EVALUATION OF NEW SYSTEMS

To be considered for initial placement on the ETL, the candidate endorsed tool
must provide some significant feature or improvement that is not available
in any of the currently endorsed tools. If the verification system meets this
requirement, the evaluators shall analyze the entire verification system,
concentrating on the requirements described in Chapters 3 and 4 of this
document. If a requirement is not completely satisfied, but the developer
is working toward completion, the relative significance of the requirement
shall be measured by the evaluation team. The team shall determine if the
deficiency is substantial or detrimental. For example, a poor user
interface would not be as significant as the lack of a justification of the
methodology. Requirements not completely satisfied shall be identified and
documented in the final evaluation report.

Studies or prior evaluations (e.g., the Verification Assessment Study Final
Report) [2] performed on the verification system shall be reviewed. Strengths
and weaknesses identified in other reports shall be considered when evaluating
the verification system.

The following are the major steps leading to an endorsement and ETL listing
for a new verification system.

1) The developer submits a request for evaluation to the NCSC
Verification Committee Chairperson.

2) The Committee meets to determine whether the verification
system provides a significant improvement to systems already on
the ETL or provides a useful approach or capability that the
existing systems lack.

3) If the result is favorable, an evaluation team is formed and
the verification system evaluation begins.

4) Upon completion of the evaluation, a Technical Assessment
Report (TAR) is written by the evaluation team.

5) The Committee reviews the TAR and makes recommendations on
endorsement.

6) The Committee Chairperson approves or disapproves endorsement.

7) If approved, an ETL entry is issued for the verification
system.

8) A TAR is issued for the verification system.

2.2 REEVALUATION FOR ENDORSEMENT

The term reevaluation for endorsement denotes the evaluation of a new
version of an endorsed system for placement on the ETL. A significant
number of changes or enhancements, as determined by the developer, may warrant

Page 8

a reevaluation for endorsement. The intent of this type of reevaluation is to
permit improvements to endorsed versions and advocate state-of-the-art
technology on the ETL while maintaining the assurance of the original endorsed
version.

A verification system that is already on the ETL maintains assurance of
soundness and integrity through configuration management (see Appendix).
The documentation of this process is evidence for the reevaluation of the
verification system. Reevaluations are based upon an assessment of all
evidence and a presentation of this material by the vendor to the NCSC. The
NCSC reserves the right to request additional evidence as necessary.

The vendor shall prepare the summary of evidence in the form of a Vendor
Report (VR). The vendor may submit the VR to the NCSC at any time after all
changes have ended for the version in question. The VR shall relate the
reevaluation evidence at a level of detail equivalent to the TAR. The VR
shall assert that assurance has been upheld and shall include sufficient
commentary to allow an understanding of every change made to the
verification system since the endorsed version.

The Committee shall expect the vendor to present a thorough technical overview
of changes to the verification system and an analysis of the changes,
demonstrating continuity and retention of assurance. The Committee
subsequently issues a rec*ommendation to the Committee Chairperson stating
that assurance has or has not been maintained by the current verification
system since it was endorsed. If the verification system does not sustain its
endorsement, the vendor may be given the option for another review by the
Committee. The reevaluation cycle ends with an endorsement determination by
the Committee Chairperson, and if the determination is favorable, a listing of
the new release is added to the ETL, replacing the previously endorsed
version; the old version is then archived.

The following are the major steps leading to an endorsement and ETL listing
for a revised verification system.

1) The vendor submits the VR and other materials to the NCSC
Verification Committee Chairperson.

2) An evaluation team is formed to review the VR.

3) The team adds any additional comments and submits them to the
Verification Committee.

4) The vendor defends the VR before the Committee.

5) The Committee makes recommendations on endorsement.

6) The Committee Chairperson approves or disapproves endorsement.

7) If approved, a new ETL entry is issued for the revised
verification system.

8) The VR is issued for the revisedverification system.

Page 9

2.3 REEVALUATION FOR REMOVAL

Once a verification system is endorsed, it shall normally remain on the ETL as
long as it is supported and is not replaced by another system. The
Committee makes the final decision on removal of a verification system from
the ETL. For example, too many bugs, lack of users, elimination of support
and maintenance, and unsoundness are all reasons which may warrant removal
of a verification system from the ETL. Upon removal, the Committee makes a
formal announcement and provides a written justification of their decision.

Systems on the ETL that are removed or replaced shall be archived. Systems
developers that have a Memorandum of Agreement (MOA) with the NCSC to use a
verification system that is later archived may continue using the system
agreed upon in the MOA. Verification evidence from a removed or replaced
verification system shall not be accepted in new system evaluations for use in
satisfying the A1 Design Specification and Verification requirement.

The following are the major steps leading to the removal of a verification
system from the ETL.

1) The Verification Committee questions the endorsement of a
verification system on the ETL.

2) An evaluation team is formed and the verification system
evaluation begins, focusing on the area in question.

3) Upon completion of the evaluation, a TAR is written by the
evaluation team.

4) The Committee reviews the TAR and makes recommendations on
removal.

5) The Committee Chairperson approves or disapproves removal.

6) If removed, a new ETL is issued eliminating the verification
system in question.

7) A TAR is issued for the verification system under evaluation.

 2.4 BETA VERSIONS

Currently, verification systems are not production quality tools and are
frequently being enhanced and corrected. The version of a verification system
that has been endorsed may not be the newest and most capable version.
Modified versions are known as beta tool versions. Beta versions are useful
in helping system developers uncover bugs before submitting the verification
system for evaluation.

The goal of beta versions is to stabilize the verification system. Users
should not assume that any particular beta version will be evaluated or
endorsed by the NCSC. If the developer of a trusted system is using a beta
version of a formal verification system, specifications and proof evidence

Page 10

shall be submitted to the NCSC which can be completely checked without
significant modification using an endorsed tool as stated in the A1
requirement. This can be accomplished by using either the currently
endorsed version of a verification system or a previously endorsed version
that was agreed upon by the trusted system developer and the developer's
evaluation team. Submitted specifications and proof evidence that are not
compatible with the endorsed or agreed-upon version of the tool may require
substantial modification by the trusted system developer.

3. METHODOLOGY AND SYSTEM SPECIFICATION

The technical factors listed in this Chapter are useful measures of the
quality and completeness of a verification system. The factors are divided
into four categories: 1) methodology, 2) features, 3) assurance, and 4)
documentation. Methodology is the underlying principles and rules of
organization of the verification system. Features include the functionality
of the verification system. Assurance is the confidence and level of trust
that can be placed in the verification system. Documentation consists of a
set of manuals and technical papers that fully describe the verification
system, its components, application, operation, and maintenance.

These categories extend across each of the components of the verification
system. These components minimally consist of the following:

a) a mathematical specification language that allows the user to
express correctness conditions,

b) a specification processor that interprets the specification and
generates conjectures interpretable by the reasoning mechanism,
and

c) a reasoning mechanism that interprets the conjectures generated
by the processor and checks the proof or proves that the
correctness conditions are satisfied.

3.1 METHODOLOGY

The methodology of the verification system shall consist of a set of
propositions used as rules for performing formal verification in that
system. This methodology shall have a sound, logical basis. This requirement
is a necessary but not sufficient condition for the endorsement of the system.

3.2 FEATURES

3.2.1 Specification Language

a. Language expressiveness.

The specification language shall be sufficiently expressive to
support the methodology of the verification system. This ensures that the

Page 11

specification language is powerful and rich enough to support the underlying
methodology. For example, if the methodology requires that a specification
language be used to model systems as state machines, then the specification
language must semantically and syntactically support all of the necessary
elements for modeling systems as state machines.

b. Defined constructs.

The specification language shall consist of a set of constructs
that are rigorously defined (e.g., in Backus-Naur Form with appropriate
semantic definitions). This implies that the language is formally described
by a set of rules for correct use.

c. Mnemonics.

The syntax of the specification language shall be clear and
concise without obscuring the interpretation of the language constructs.
Traditional symbols from mathematics should be employed wherever possible;
reasonably mnemonic symbols should be used in other cases. This aids the
users in interpreting constructs more readily.

d. Internal uniformity.

The syntax of the specification language shall be internally
uniform. This ensures that the rules of the specification language are not
contradictory.

e. Overloading.

Each terminal symbol of the specification language's grammar
should support one and only one semantic definition insofar as it increases
comprehensibility. When it is beneficial to incorporate more than one
definition for a symbol or construct, the semantics of the construct shall
be clearly defined from the context used. This is necessary to avoid
confusion by having one construct with more than one interpretation or more
than one construct with the same interpretation. For example, the symbol
"+" may be used for both integer and real addition, but it should not be
used to denote both integer addition and conjunction.

f. Correctness conditions.

The specification language shall provide the capability to express
correctness conditions.

g. Incremental verification.

The methodology shall allow incremental verification. This
would allow, for example, a verification of portions of a system specification
at a single time. Incremental verification may also include the capability
for performing verification of different levels of abstraction. This allows
essential elements to be presented in the most abstract level and important
details to be presented at successive levels of refinement.

Page 12

3.2.2 Specification Processing

a. Input.

All of the constructs of the specification language shall be
processible by the specification processor(s). This is necessary to convert
the specifications to a language or form that is interpretable by the
reasoning mechanism.

b. Output.

The output from the processor(s) shall be interpretable by the
reasoning mechanism. Conjectures derived from the correctness conditions
shall be generated. The output shall also report errors in specification
processing to the user in an easily interpretable manner.

3.2.3 Reasoning Mechanism

a. Compatibility of components.

The reasoning mechanism shall be compatible with the other
components of the verification system to ensure that the mechanism is
capable of determining the validity of conjectures produced by other
components of the verification system. For example, if conjectures are
generated by the specification processor that must be proven, then the
reasoning mechanism must be able to interpret these conjectures correctly.

b. Compatibility of constructs.

The well-formed formulas in the specification language that may
also be input either directly or indirectly into the reasoning mechanism using
the language(s) of the reasoning mechanism shall be mappable to ensure
compatibility of components. For example, if a lemma can be defined in the
specification language as "LEMMA <well-formed formula>" and can also be
defined in the reasoning mechanism, then the construct for the lemma in the
reasoning mechanism shall be in the same form.

c. Documentation.

The reasoning mechanism shall document the steps it takes to
develop the proof. Documentation provides users with a stable, standard
reasoning mechanism that facilitates debugging and demonstrates completed
proofs. If the reasoning mechanism is defined to use more than one method
of reasoning, then it should clearly state which method is used and remain
consistent within each method of reasoning.

d. Reprocessing.

The reasoning mechanism shall provide a means for reprocessing
completed proof sessions. This is to ensure that users have a means of
reprocessing theorems without reconstructing the proof process. This mechanism
shall also save the users from reentering voluminous input to the reasoning
mechanism. For example, reprocessing may be accomplished by the generation of

Page 13

command files that can be invoked to recreate the proof session.

e. Validation.

The methodology shall provide a means for validating proof
sessions independently of the reasoning mechanism. Proof strategies checked
by an independent, trustworthy proof checker shall ensure that only sound
proof steps were employed in the proof process. Trustworthy implies that
there is assurance that the proof checker accepts only valid proofs. The
validation process shall not be circumventable and shall always be invoked for
each completed proof session.

f. Reusability.

The reasoning mechanism shall facilitate the use of system- and
user-supplied databases of reusable definitions and theorems. This provides a
foundation for proof sessions that will save the user time and resources in
reproving similar theorems and lemmas.

g. Proof dependencies.

The reasoning mechanism shall track the status of the use and
reuse of theorems throughout all phases of development. Proof dependencies
shall be identified and maintained so that if modifications are made to a
specification (and indirectly to any related conjectures/theorems), the
minimal set of theorems and lemmas that are dependent on the modified proofs
will need to be reproved.

3.3 ASSURANCE, SOUNDNESS, AND ROBUSTNESS

a. Sound basis.

Each of the verification system's tools and services shall support
the methodology. This ensures that users can understand the functionality
of the verification system with respect to the methodology and that the
methodology is supported by the components of the verification system.

b. Correctness.

The verification system shall be rigorously tested to provide
assurance that the majority of the system is free of error.

c. Predictability.

The verification system shall behave predictably. Consistent
results are needed for the users to interpret the results homogeneously.
This will ensure faster and easier interpretation and fewer errors in
interpretation.

d. Previous use.

The verification system shall have a history of use to establish
stability, usefulness, and credibility. This history shall contain

Page 14

documentation of applications (for example, applications from academia or
the developers). These applications shall test the verification system, so
that strengths and weaknesses may be uncovered.

e. Error recovery.

The verification system shall gracefully recover from internal
software errors. This error handling is necessary to ensure that errors in
the verification system do not cause damage to a user session.

f. Software engineering.

The verification system shall be implemented using documented
software engineering practices. The software shall be internally structured
into well-defined, independent modules for ease of maintainability and
configuration management.

g. Logical theory.

All logical theories used in the verification system shall be
sound. If more than one logical theory is used in the verification system,
then there shall be evidence that the theories work together via a
metalogic. This provides the users with a sound method of interaction among
the theories.

h. Machine independence.

The functioning of the methodology and the language of the
verification system shall be machine independent. This is to ensure that
the functioning of the theory, specification language, reasoning mechanism and
other essential features does not change from one machine to another.
Additionally, the responses that the user receives from each of the components
of the verification system should be consistent across the different
hardware environments that support the verification system.

3.4 DOCUMENTATION

a. Informal justification.

An informal justification of the methodology behind the
verification system shall be provided. All parts of the methodology must be
fully documented to serve as a medium for validating the accuracy of the
stated implementation of the verification system. The logical theory used
in the verification system shall be documented. If more than one logical
theory exists in the system, the metalogic employed in the system shall be
explained and fully documented. This documentation is essential for the
evaluators and will aid the users in understanding the methodology.

b. Formal definition.

A formal definition (e.g., denotational semantics) of the
specification language(s) shall be provided. A formal definition shall
include a clear semantic definition of the expressions supported by the

Page 15

specification language and a concise description of the syntax of all
specification language constructs. This is essential for the evaluators and
will aid the users in understanding the specification language.

c. Explanation of methodology.

A description of how to use the methodology, its tools, its
limitations, and the kinds of properties that it can verify shall be provided.
This is essential for users to be able to understand the methodology and to
use the verification system effectively.

4. IMPLEMENTATION AND OTHER SUPPORT FACTORS

The NCSC considers the support factors listed in this section to be measures
of the usefulness, understandability, and maintainability of the
verification system. The support factors are divided into the following three
categories: 1) features, 2) assurances, and 3) documentation.

Two features that provide support for the user are the interface and the
base hardware of the verification system. Configuration management,
testing, and mainte*nance are three means of providing assurance. (The
Appendix contains additional information on configuration management.)
Documentation consists of a set of manuals and technical papers that fully
describe the verification system, its components, application, operation,
and maintenance.

4.1 FEATURES

4.1.1 User Interface

a. Ease of use.

The interface for the verification system shall be user-
friendly. Input must be understandable, output must be informative, and the
entire interface must support the users' goals.

b. Understandable input.

Input shall be distinct and concise for each language construct
and adequately represent what the system requires for the construct.

c. Understandable output.

Output from the components of the verification system shall be
easily interpretable, precise, and consistent. This is to ensure that users
are provided with understandable and helpful information.

d. Compatibility.

Output from the screen, the processor, and the reasoning mechanism
shall be compatible with their respective input, where appropriate. It is
reasonable for a specification processor (reasoning mechanism) to put

Page 16

assertions into a canonical form, but canonical forms should be compatible
in the specification language (reasoning mechanism).

e. Functionality.

The interface shall support the tasks required by the user to
exercise the verification system effectively. This is to ensure that all
commands necessary to utilize the components of the methodology are
available and functioning according to accompanying documentation.

f. Error reporting.

The verification system shall detect, report, and recover from
errors in a specification. Error reporting shall remain consistent by
having the same error message generated each time the error identified in
the message is encountered. The output must be informative and
interpretable by the users.

4.1.2 Hardware Support

a. Availability.

The verification system shall be available on commonly used
computer systems. This will help ensure that users need not purchase
expensive or outdated machines, or software packages to run the verification
system.

b. Efficiency.

Processing efficiency and memory usage shall be reasonable for
specifications of substantial size. This ensures that users are able to
process simple (no complex constructs), short (no more than two or three
pages) specifications in a reasonable amount of time (a few minutes). The
processing time of larger, more complex specifications shall be proportional
to the processing time of smaller, less complex specifications. Users
should not need to wait an unacceptable amount of time for feedback.

4.2 ASSURANCE

4.2.1 Configuration Management

a. Life-cycle maintenance.

Configuration management tools and procedures shall be used to
track changes (both bug fixes and new features) to the verification system
from initial concept to final implementation. This provides both the system
maintainers and the evaluators with a method of tracking the numerous
changes made to the verification system to ensure that only sound changes
are implemented.

b. Configuration items.

Page 17

Identification of Configuration Items (CIs) shall begin early in
the design stage. CIs are readily established on a logical basis at this
time. The configuration management process shall allow for the possibility
that system changes will convert non-CI components into CIs.

c. Configuration management tools.

Tools shall exist for comparing a newly generated version with the
previous version. These tools shall confirm that a) only the intended changes
have been made in the code that will actually be used as the new version of
the verification system, and b) no additional changes have been inserted
into the verification system that were not intended by the system
developer. The tools used to perform these functions shall also be under
strict configuration control.

d. Configuration control.

Configuration control shall cover a broad range of items including
software, documentation, design data, source code, the running version of
the object code, and tests. Configuration control shall begin in the earliest
stages of design and development and extend over the full life of the CIs. It
involves not only the approval of changes and their implementation but also
the updating of all related material to reflect each change. For example,
often a change to one area of a verification system may necessitate a change
to another area. It is not acceptable to write or update documentation only
for new code or newly modified code, rather than for all parts of the
verification system affected by the addition or change. Changes to all CIs
shall be subject to review and approval.

The configuration control process begins with the documentation of
a change request. This change request should include justification for the
proposed change, all of the affected items and documents, and the proposed
solution. The change request shall be recorded in order to provide a way of
tracking all proposed system changes and to ensure against duplicate change
requests being processed.

e. Configuration accounting.

Configuration accounting shall yield information that can be
used to answer the following questions: What source code changes were made on
a given date? Was a given change absolutely necessary? Why or why not? What
were all the changes in a given CI between releases N and N+1? By whom were
they made, and why? What other modifications were required by the changes
to this CI? Were modifications required in the test set or documentation to
accommodate any of these changes? What were all the changes made to support a
given change request?

f. Configuration auditing.

A configuration auditor shall be able to trace a system change
from start to finish. The auditor shall check that only approved changes have
been implemented, and that all tests and documentation have been updated
concurrently with each implementation to reflect the current status of the
system.

Page 18

g. Configuration control board.

The vendor's Configuration Control Board (CCB) shall be
responsible for approving and disapproving change requests, prioritizing
approved modifications, and verifying that changes are properly
incorporated. The members of the CCB shall interact periodically to discuss
configuration management topics such as proposed changes, configuration status
accounting reports, and other topics that may be of interest to the
different areas of the system development.

4.2.2 Support and Maintenance

The verification system shall have ongoing support and maintenance from the
developers or another qualified vendor. Skilled maintainers are necessary
to make changes to the verification system.

4.2.3 Testing

a. Functional tests.

Functional tests shall be conducted to demonstrate that the
verification system operates as advertised. These tests shall be maintained
over the life cycle of the verification system. This ensures that a test
suite is available for use on all versions of the verification system. The
test suite shall be enhanced as software errors are identified to
demonstrate the elimination of the errors in subsequent versions. Tests shall
be done at the module level to demonstrate compliance with design
documentation and at the system level to demonstrate that software
accurately generates assertions, correctly implements the logic, and correctly
responds to user commands.

b. Stress testing.

The system shall undergo stress testing by the evaluation team
to test the limits of and to attempt to generate contradictions in the
specification language, the reasoning mechanism, and large specifications.

4.3 DOCUMENTATION

a. Configuration management plan.

A configuration management plan and supporting evidence assuring a
consistent mapping of documentation and tools shall be provided for the
evaluation. This provides the evaluators with evidence that compatibility
exists between the components of the verification system and its
documentation. The plan shall include the following:

1. The configuration management plan shall describe what is to
be done to implement configuration management in the verification system.
It shall define the roles and responsibilities of designers, developers,

Page 19

management, the Configuration Control Board, and all of the personnel involved
with any part of the life cycle of the verification system.

2. Tools used for configuration management shall be documented
in the configuration management plan. The forms used for change control,
conventions for labeling configuration items, etc., shall be contained in
the configuration management plan along with a description of each.

3. The plan shall describe procedures for how the design and
implementation of changes are proposed, evaluated, coordinated, and approved
or disapproved. The configuration management plan shall also include the
steps to ensure that only those approved changes are actually included and
that the changes are included in all of the necessary areas.

4. The configuration management plan shall describe how changes
are made to the plan itself and how emergency procedures are handled. It
should describe the procedures for performing time-sensitive changes without
going through a full review process. These procedures shall define the
steps for retroactively implementing configuration management after the
emergency change has been completed.

b. Configuration management evidence.

Documentation of the configuration management activities shall be
provided to the evaluators. This ensures that the policies of the
configuration management plan have been followed.

c. Source code.

Well-documented source code for the verification system, as well
as documentation to aid in analysis of the code during the evaluation, shall
be provided. This provides the evaluators with evidence that good software
engineering practices and configuration management procedures were used in the
implementation of the verification system.

d. Test documentation.

Documentation of test suites and test procedures used to check
functionality of the system shall be provided. This provides an explanation
to the evaluators of each test case, the testing methodology, test results,
and procedures for using the tests.

e. User's guide.

An accurate and complete user's guide containing all available
commands and their usage shall be provided in a tutorial format. The user's
guide shall contain worked examples. This is necessary to guide the users
in the use of the verification system.

f. Reference manuals.

A reference manual that contains instructions, error messages, and
examples of how to use the system shall be provided. This provides the
users with a guide for problem-solving techniques as well as answers to

Page 20

questions that may arise while using the verification system.

g. Facilities manual.

A description of the major components of the software and their
interfacing shall be provided. This will provide users with a limited
knowledge of the hardware base required to configure and use the
verification system.

h. Vendor report.

A report written by the vendor during a reevaluation that provides
a complete description of the verification system and changes made since the
initial evaluation shall be provided. This report, along with configuration
management documentation, provides the evaluators with evidence that soundness
of the system has not been jeopardized.

i. Significant worked examples.

Significant worked examples shall be provided which demonstrate
the strengths, weaknesses, and limitations of the verification system.
These examples shall reflect portions of computing systems. They may reside
in the user's guide, the reference manual, or a separate document.

 5. FUTURE DIRECTIONS

The purpose of this section is to list possible features for future or beyond-
A1 verification systems. Additionally, it contains possibilities for future
research -- areas that researchers may choose to investigate. Research and
development of new verification systems or investigating areas not included in
this list is also encouraged. Note that the order in which these items appear
has no bearing on their relative importance.

a. The specification language should permit flexibility in
approaches to specification.

b. The specification language should allow the expression of
properties involving liveness, concurrency, and eventuality.

c. The reasoning mechanism should include a method for reasoning
about information flows.

d. The design and code of the verification system should be
formally verified.

e. The theory should support rapid prototyping. Rapid prototyping
supports a way of developing a first, quick version of a
specification. The prototype provides immediate feedback to the
user.

f. The verification system should make use of standard (or
reusable) components where possible (for example, use of a
standard windowing system, use of a standard language-

Page 21

independent parser, editor, or printer, use of a standard database
support system, etc.).

g. The verification system should provide a language-specific
verifier for a commonly used systems programming language.

h. The verification system should provide a method for mapping a
top-level specification to verified source code.

i. The verification system should provide a tool for
automatic test data generation of the design specification.

j. The verification system should provide a means of identifying
which paths in the source code of the verification system are
tested by a test suite.

k. The verification system should provide a facility for high-
level debugging/tracing of unsuccessful proofs.

l. A formal justification of the methodology behind the
verification system should be provided.

Page 22

 APPENDIX

CONFIGURATION MANAGEMENT

The purpose of configuration management is to ensure that changes made to
verification systems take place in an identifiable and controlled environment.
Configuration managers take responsibility that additions, deletions, or
changes made to the verification system do not jeopardize its ability to
satisfy the requirements in Chapters 3 and 4. Therefore, configuration
management is vital to maintaining the endorsement of a verification system.

Additional information on configuration management can be found in A Guide
to Understanding Configuration Management in Trusted Systems. [3]

OVERVIEW OF CONFIGURATION MANAGEMENT

Configuration management is a discipline applying technical and administrative
direction to: 1) identify and document the functional and physical
characteristics of each configuration item for the system; 2) manage all
changes to these characteristics; and 3) record and report the status of
change processing and implementation. Configuration management involves
process monitoring, version control, information capture, quality control,
bookkeeping, and an organizational framework to support these activities. The
configuration being managed is the verification system plus all tools and
documentation related to the configuration process.

Four major aspects of configuration management are configuration
identification, configuration control, configuration status accounting, and
configuration auditing.

CONFIGURATION IDENTIFICATION

Configuration management entails decomposing the verification system into
identifiable, understandable, manageable, trackable units known as
Configuration Items (CIs). A CI is a uniquely identifiable subset of the
system that represents the small*est portion to be subject to independent
configuration control procedures. The decomposition process of a verification
system into CIs is called configuration identification.

CIs can vary widely in size, type, and complexity. Although there are no
hard-and-fast rules for decomposition, the granularity of CIs can have great
practical importance. A favorable strategy is to designate relatively large
CIs for elements that are not expected to change over the life of the
system, and small CIs for elements likely to change more frequently.

CONFIGURATION CONTROL

Configuration control is a means of assuring that system changes are
approved before being implemented, only the proposed and approved changes

Page 23

are implemented, and the implementation is complete and accurate. This
involves strict procedures for proposing, monitoring, and approving system
changes and their implementation. Configuration control entails central
direction of the change process by personnel who coordinate analytical
tasks, approve system changes, review the implementation of changes, and
supervise other tasks such as documentation.

CONFIGURATION ACCOUNTING

Configuration accounting documents the status of configuration control
activities and in general provides the information needed to manage a
configuration effectively. It allows managers to trace system changes and
establish the history of any developmental problems and associated fixes.
Configuration accounting also tracks the status of current changes as they
move through the configuration control process. Configuration accounting
establishes the granularity of recorded information and thus shapes the
accuracy and usefulness of the audit function.

The accounting function must be able to locate all possible versions of a CI
and all of the incremental changes involved, thereby deriving the status of
that CI at any specific time. The associated records must include
commentary about the reason for each change and its major implications for the
verification system.

CONFIGURATION AUDIT

Configuration audit is the quality assurance component of configuration
management. It involves periodic checks to determine the consistency and
completeness of accounting information and to verify that all configuration
management policies are being followed. A vendor's configuration management
program must be able to sustain a complete configuration audit by an NCSC
review team.

CONFIGURATION MANAGEMENT PLAN

Strict adherence to a comprehensive configuration management plan is one of
the most important requirements for successful configuration management.
The configuration management plan is the vendor's document tailored to the
company's practices and personnel. The plan accurately describes what the
vendor is doing to the system at each moment and what evidence is being
recorded.

CONFIGURATION CONTROL BOARD

All analytical and design tasks are conducted under the direction of the
vendor's corporate entity called the Configuration Control Board (CCB). The
CCB is headed by a chairperson who is responsible for assuring that changes
made do not jeopardize the soundness of the verification system. The
Chairperson assures that the changes made are approved, tested, documented,
and implemented correctly.

Page 24

The members of the CCB should interact periodically, either through formal
meetings or other available means, to discuss configuration management
topics such as proposed changes, configuration status accounting reports,
and other topics that may be of interest to the different areas of the
system development. These interactions should be held to keep the entire
system team updated on all advancements or alterations in the verification
system.

Page 25

 GLOSSARY

Beta Version

Beta versions are intermediate releases of a product to be
tested at one or more customer sites by the software end-user. The customer
describes in detail any problems encountered during testing to the
developer, who makes the appropriate modifications. Beta versions are not
endorsed by the NCSC, but are primarily used for debugging and testing prior
to submission for endorsement.

Complete

A theory is complete if and only if every sentence of its language
is either provable or refutable.

Concurrency

Simultaneous or parallel processing of events.

Configuration Accounting

The recording and reporting of configuration item descriptions and
all departures from the baseline during design and production.

Configuration Audit

An independent review of computer software for the purpose of
assessing compliance with established requirements, standards, and
baselines. [3]

Configuration Control

The process of controlling modifications to the system's design,
hardware, firmware, software, and documentation which provides sufficient
assurance that the system is protected against the introduction of improper
modification prior to, during, and after system implementation. [3]

Configuration Control Board (CCB)

An established vendor committee that is the final authority on all
proposed changes to the verification system.

Configuration Identification

The identifying of the system configuration throughout the design,
development, test, and production tasks. [3]

Configuration Item (CI)

The smallest component tracked by the configuration management
system. [3]

Page 26

Configuration Management

The process of controlling modifications to a verification system,
including documentation, that provides sufficient assurance that the system is
protected against the introduction of improper modification before, during,
and after system implementation.

Conjecture

A general conclusion proposed to be proved upon the basis of
certain given premises or assumptions.

Consistency (Mathematical)

A logical theory is consistent if it contains no formula such that
the formula and its negation are provable theorems.

Consistency (Methodological)

Steadfast adherence to the same principles, course, form, etc.

Correctness

Free from errors; conforming to fact or truth.

Correctness Conditions

Conjectures that formalize the rules, security policies, models,
or other critical requirements on a system.

Design Verification

A demonstration that a formal specification of a software system
satisfies the correctness conditions (critical requirements specification).

Documentation

A set of manuals and technical papers that fully describe the
verification system, its components, application, and operation.

Endorsed Tools List (ETL)

A list composed of those verification systems currently
recommended by the NCSC for use in developing highly trusted systems.

Eventuality

The ability to prove that at some time in the future, a particular
event will occur.

Formal Justification

Mathematically precise evidence that the methodology of the

Page 27

verification system is sound.

Formal Verification

The process of using formal proofs to demonstrate the
consistency (design verification) between a formal specification of a system
and a formal security policy model or (implementation verification) between
the formal specification and its program implementation. [1]

Implementation Verification

A demonstration that a program implementation satisfies a formal
specification of a system.

Informal Justification

An English description of the tools of a verification system and
how they interact. This includes a justification of the soundness of the
theory.

Language

A set of symbols and rules of syntax regulating the relationship
between the symbols, used to convey information.

Liveness

Formalizations that ensure that a system does something that it
should do.

Metalogic

A type of logic used to describe another type of logic or a
combination of different types of logic.

Methodology

The underlying principles and rules of organization of a
verification system.

Production Quality Verification System

A verification system that is sound, user-friendly, efficient,
robust, well-documented, maintainable, well-engineered (developed with
software engineering techniques), available on a variety of hardware, and
promoted (has education available for users). [2]

Proof

A syntactic analysis performed to validate the truth of an
assertion relative to an (assumed) base of assertions.

Proof Checker

Page 28

A tool that 1) accepts as input an assertion (called a
conjecture), a set of assertions (called assumptions), and a proof; 2)
terminates and outputs either success or failure; and 3) if it succeeds,
then the conjecture is a valid consequence of the assumptions.

Reasoning Mechanism

A tool (interactive or fully automated) capable of checking or
constructing proofs.

Safety Properties

Formalizations that ensure that a system does not do something
that it should not do.

Semantics

A set of rules for interpreting the symbols and well-formed
formulae of a language.

Sound

An argument is sound if all of its propositions are true and its
argument form is valid. A proof system is sound relative to a given semantics
if every conjecture that can be proved is a valid consequence of the
assumptions used in the proof.

Specification Language

A logically precise language used to describe the structure or
behavior of a system to be verified.

Specification Processor

A software tool capable of receiving input, parsing it, generating
conjectures (candidate theorems), and supplying results for further analysis
(e.g., reasoning mechanism).

Syntax

A set of rules for constructing sequences of symbols from the
primitive symbols of a language.

Technical Assessment Report (TAR)

A report that is written by an evaluation team during an
evaluation of a verification system and available upon completion.

Theorem

In a given logical system, a well-formed formula that is proven in
that system.

Theory

Page 29

A formal theory is a coherent group of general propositions used
as principles of explanation for a particular class of phenomena.

User-Friendly

A system is user-friendly if it facilitates learning and usage
in an efficient manner.

Valid

An argument is valid when the conclusion is a valid consequence of
the assumptions used in the argument.

Vendor Report (VR)

A report that is written by a vendor during and available upon
completion of a reevaluation of a verification system.

Verification

The process of comparing two levels of system specification for
proper correspondence (e.g., security policy model with top-level
specification, top-level specification with source code, or source code with
object code). This process may or may not be automated. [1]

Verification Committee

A standing committee responsible for the management of the
verification efforts at the NCSC. The committee is chaired by the NCSC Deputy
Director and includes the NCSC Chief Scientist, as well as representatives
from both the NCSC's Office of Research and Development and Office of Computer
Security Evaluations, Publications, and Support.

Verification System

An integrated set of tools and techniques for performing
verification.

Well-Formed Formula

A sequence of symbols from a language that is constructed in
accordance with the syntax for that language.

Page 30

 BIBLIOGRAPHY

[1] Department of Defense, Department of Defense Trusted Computer System
Evaluation Criteria, DOD 5200.28-STD, December 1985.

[2] Kemmerer, Richard A., Verification Assessment Study Final Report,
University of California, March 1986.

[3] National Computer Security Center, A Guide to Understanding
Configuration Management in Trusted Systems, NCSC-TG-006, March 1988.

[4] National Computer Security Center, Trusted Network Interpretation of the
Trusted Computer System Evaluation Criteria, NCSC-TG-005, July 1987.

[5] National Security Agency, Information Systems Security Products and
Services Catalogue, Issued Quarterly, January 1989 and successors.

