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SECTION 1

INTRODUCTION

This document is the second volume in the series of companion documents to theTrusted Database
Management System Interpretation of the Trusted Computer System Evaluation Criteria [TDI 91;
DoD 85]. This document examines entity and referential integrity issues in multilevel secure
(MLS) database management systems and summarizes the research to date in these areas.

1.1 BACKGROUND AND PURPOSE

In 1991 the National Computer Security Center published theTrusted Database Management
System Interpretation (TDI) of the Trusted Computer System Evaluation Criteria (TCSEC). The
TDI, however, does not address many topics that are important to the design and development of
secure database management systems (DBMSs). These topics (such as inference, aggregation, and
database integrity) are being addressed by ongoing research and development. Since specific
techniques in these topic areas had not yet gained broad acceptance, the topics were considered
inappropriate for inclusion in the TDI.

The TDI is being supplemented by a series of companion documents to address these issues
specific to secure DBMSs. Each companion document focuses on one topic by describing the
problem, discussing the issues, and summarizing the research that has been done to date. The intent
of the series is to make it clear to DBMS vendors, system designers, evaluators, and researchers
what the issues are, the current approaches, their pros and cons, how they relate to a TCSEC/TDI
evaluation, and what specific areas require additional research. Although some guidance may be
presented, nothing contained within these documents should be interpreted as criteria.

These documents assume the reader understands basic DBMS concepts and relational database
terminology. A security background sufficient to use the TDI and TCSEC is also assumed;
however, fundamentals are discussed whenever a common understanding is important to the
discussion.

1.2 SCOPE

This document addresses entity and referential integrity issues in multilevel secure DBMSs. It is
the second of five volumes in the series of TDI companion documents, which includes the
following documents:

• Inference and Aggregation Issues in Secure Database Management Systems[Inference
96]

• Entity and Referential Integrity Issues in Multilevel Secure Database Management
Systems

• Polyinstantiation Issues in Multilevel Secure Database Management Systems[Poly 96]

• Auditing Issues in Secure Database Management Systems[Audit 96]

• Discretionary Access Control Issues in High Assurance Secure Database Management
Systems[DAC 96]



This series of documents uses terminology from the relational model to provide a common basis
for understanding the concepts presented. For most of the topics covered in this series the concepts
presented should apply to most database modeling paradigms, depending on the specifics of each
model. For the entity and referential integrity constraints discussed in this document, however,
there are important differences between different models. This is because the primary keys in a
relational DBMS represent both unique identifiers for tuples and values of attributes in the tuple.
They must be protected in accordance with the sensitivity of the data they represent and this can
interfere with their role as a unique identifier of tuples. By contrast, the object identifier (OID) in
an Object-Oriented DBMS is not a property or attribute of the object it identifies, and does not
represent a user-visible data value. Khoshafian and Copeland provide a useful taxonomy of
different ways of specifying object identity including the techniques used in relational and Object-
Oriented DBMSs [Khoshafian 86]. Similarly, in a relational DBMS, foreign keys represent data
values and serve as pointers to other tuples. In an Object-Oriented DBMS, pointers to other objects
are not used to store data values, but rather to represent the inclusion of one object within another.
As in relational databases, problems may occur if a reference is deleted and some references remain
in objects. The implications of these distinctions for enforcement of secrecy in an Object-Oriented
DBMS require further research. This document specifically addresses relational DBMSs.

This document is related to the companion documentsInference and Aggregation Issues in Secure
Database Management Systems and Polyinstantiation Issues in Multilevel Secure Database
Management Systems. Much of the discussion of the relationship between enforcement of integrity
constraints and multilevel security centers on the potential inference channels which integrity
constraints can introduce. One way to avoid these channels for entity integrity is to use
polyinstantiation. This is discussed later in more detail.

1.3 INTRODUCTION TO ENTITY AND REFERENTIAL INTEGRITY

Secrecy and integrity are two key concepts in the community of database security researchers and
users. Secrecy refers to the protection or safety of the data against unauthorized disclosure, and
integrity refers to the unauthorized alteration or destruction of data. In the wider database research
community, integrity refers more generally to the correctness, accuracy, and internal consistency
of data.

Preserving the accuracy of information is extremely important rn any database. In the relational
model, one way in which accuracy of information is preserved is by preventing updates that violate
integrity constraints. Entity integrity and referential integrity are two of the most important
integrity constraints. They are defined on relations and are enforced by the DBMS.

Entity integrity states that no primary key attribute of a relation is allowed to have null values. In
addition, the primary key must have a unique value. These properties of a primary key correspond
to the fact that entities in the real world are distinguishable (i.e., they have a unique identification
of some kind). In the relational model, the primary key performs the function of unique
identification. Referential integrity is an interrelation integrity constraint. In general, referential
integrity defines existence relationships between entities in a database that need to be maintained
by the DBMS. This document defines these integrity constraints formally and presents their
importance in the context of security in detail.



In multilevel applications, data are classified to control disclosure. It is important to realize the
necessary trade-off to be made between secrecy and integrity because of the challenges in
enforcing integrity constraints across multiple secrecy levels without disclosure of information.
This document defines entity and referential integrity for a standard relational DBMS and then
presents methods for resolving the inherent integrity/secrecy conflict in an MLS environment.

1.4 AUDIENCES OF THIS DOCUMENT

This document is targeted at four primary audiences: the security research community, database
application developers/system integrators, trusted product vendors, and product evaluators. In
general, this document is intended to present a framework for understanding the nature of entity
and referential integrity policies or requirements and how they conflict with the need to enforce an
access control policy. This framework is used to describe the research that has been done to date
and the approaches they present for providing solutions. Each of the specific audiences should
expect to get the following from this document:

Researcher

This document describes the basic problems in simultaneously enforcing integrity constraints and
MAC. Some important research contributions are discussed as various topics are covered. Related
research on other aspects of integrity and the relationship to secrecy is discussed in Section 3.6.
For additional relevant work, the researcher should consult two other companion documents,
Inference and Aggregation Issues in Secure Database Management Systems [Inference 96] and
Polyinstantiation Issues in Multilevel Secure Database Management Systems [Poly 96].

Database Application Developer/System Integrator

This document describes various entity and referential integrity facilities which could be provided
by an MLS DBMS. It discusses the implications of these facilities relative to the tradeoffs involved
in meeting a system’s requirements for secrecy and integrity.

Trusted Product Vendor

This document describes the conflicts between Mandatory Access Controls (MAC) and multilevel
entity and referential integrity constraints. It then discusses approaches to entity and referential
integrity enforcement in an MLS database and the benefits and drawbacks of these approaches. In
particular, it considers how the issues with enforcement of entity and referential integrity
constraints in an MLS database relate to the TCSEC access control and covert channel
requirements. This is discussed in the context of tuple level as well as element level labeling. This
document will provide a framework for understanding specific requirements interpretations as they
are developed by the National Computer Security Center.



Evaluator

This document describes access control and covert channel issues related to entity and referential
integrity. It provides a framework for analyzing specific vendor mechanisms and understanding
Technical Review Board/Interpretations Working Group decisions.

1.5 ORGANIZATION OF THIS DOCUMENT

The organization of the remainder of this document is as follows:

• Section 2 gives the definitions of entity and referential integrity with respect to single-level
DBMSs and describes various important concepts related to referential integrity.

• Section 3 defines the basic concepts of entity and referential integrity with respect to
multilevel relations.

• Section 4 discusses the issues associated with covert channels related to enforcing entity
and referential integrity constraints.

• Section 5 presents conclusions.



SECTION 2

BACKGROUND

Entity integrity and referential integrity are two basic integrity requirements in a relational DBMS
(RDBMS). They help prevent incorrect data from being entered into the database. Entity integrity
guarantees a unique representation of each entity in the database through specification of primary
key attributes for each relation. Referential integrity assures that if any references exist between
two or more entities, then the related entities do exist in the database. Referential integrity places
restrictions on foreign key attributes.

Referential integrity is one of the most important interrelation integrity constraints for the
relational data model. Although its basic concepts have been discussed over the past ten years, a
successful referential integrity capability for a RDBMS is still a challenging implementation
problem. While referential integrity appears to be a simple concept, the operational definitions that
appear in the literature are imprecise and lead to a host of anomalies.

A standard relational database can be perceived by its users as a collection of relations. Arelation
has well-defined mathematical properties and is used to store data. Each relation has two parts:

1. A state-invariant relation schemaR (A1, A2, ..., An), where each Ai is an attribute over
some domain Di, 1 ≤ i ≤ n, which is a set of acceptable values for Ai.

2. A state-dependent relation R overR, which is a set of distinct tuples of the form (a1, a2...,
an), where each element ai; is a value in domain di, 1 ≤ i ≤ n.

The following notation and conventions are used throughout this document. In definitions, relation
schemes are denoted in bold fonts (such asR, R1, R2), and the corresponding relations are denoted
using plain fonts (such as R, R1, R2). However, when clear in specific examples, the same symbol
is used to denote the relation schema, as well as the corresponding relation. Let X denote one or
more attributes of a relation R. If t is a tuple in a relation R, t [X] denotes the projection of t onto X.

This section first defines entity and referential integrity, followed by terminology related to these
concepts. The examples make use of Structured Query Language (SQL) syntax [ANSI 92, 94]. The
section then gives various rules for enforcing referential integrity and discusses the problems
associated with referential integrity in single-level relational databases. From this understanding
of integrity, we can then better discuss the conflict with enforcement of a MAC policy in Section 3.

2.1 BASIC CONCEPTS OF ENTITY AND REFERENTIAL INTEGRITY

Before defining entity integrity, it is necessary to define the concept of a primary key.

In simple terms, the primary key of a relation is just a unique identifier of each tuple in the relation.
More precisely, a primary key for a relationR is a set of attributes PK with the following
properties:



1. The value of PK uniquely identifies each tuple in the relation R. That is, for any state of
R, and any tuples t1 and t2, if t1[PK] = t2[PK] then t1 = t2.

2. PK is minimal. That is, there is no proper subset of PK satisfying property 1.

It is possible there is more than one set of attributes satisfying these properties. Any such set is
called a candidate key. Precisely one candidate must be chosen and designated as the primary key
of R.

Example 1. Consider the relation schema SOD (Starship, Objective, Destination), which contains
for each starship its name (Starship), the purpose of the flight (Objective), and its destination
(Destination). An example relation for relation schema SOD is given in Figure 2.1.

Figure 2.1: Relation SOD

Since the attribute Starship uniquely identifies each tuple of the relation SOD, it is a candidate key
of the relation SOD. As Starship is the only candidate key of the relation SOD, it is also the primary
key of relation SOD.

In SQL syntax, the attribute(s) constituting the primary key can be specified when a relation
schema is created, as the following shows:

CREATE TABLE SOD

(Starship CHAR(20) NOT NULL,

Objective CHAR(15),

Destination CHAR(10),

PRIMARY KEY (Starship))

Notice that the ANSI syntax uses the term “TABLE” instead of the term “relation” used in this
document.

The entity integrity constraint requires that all attribute values of the primary key be defined for
each tuple.

Entity Integrity: If PK is the primary key for relationR, then for all states of R, for every tuple
t in R and every attribute A in PK, t[A] is not null.

STARSHIP OBJECTIVE DESTINATION

Enterprise Exploration Talos

Voyager Spying Mars

Apollo Exploration Moon

Saratoga Mining Moon



A foreign key provides a basis for a tuple to refer to another tuple. LetR1 andR2 be two relation
schemas, and let R1 and R2 denote the respective relations corresponding to these schemas.

Referential Integrity: Let PK denote the primary key ofR2, and let FK denote one or more
attributes of the relational schema R1. FK is said to be a foreign keyof R1 referencingR2 if
given any tuple t1 in R1, the following two requirements are met:

1. t1 [FK] is either wholly null or wholly non-null, and

2. Whenever t1[FX] is non-null, there is a tuple t2 in R2 such that t1[FK] = t2[PK].

Here R1 is thereferencing relation and R2 is thereferenced relation. Sometimes PK is referred to
as the target value of the foreign key FK. Notice thatR1 andR2 need not be distinct.

Example 2. In addition to the relation schema SOD given in Example 1, consider the relation
schema PS (Person_Name, Starship), which contains the name of the employee (Person_Name)
and the name of the ship assigned to the employee (Starship). An example relation for PS is given
in Figure 2.2.

Suppose Person_Name uniquely identifies each employee in the PS relation, then Person_Name
becomes the primary key for the relation schema PS. If Starship is declared a foreign key for PS
with the relation schema SOD as the referenced relation, a DBMS that supports referential integrity
will automatically ensure that whenever an employee is assigned a (non-null) ship, there is a
matching tuple in the relation schema SOD with an identical value for the attribute Starship.

Notice that employee Mr. Spock, given in Figure 2.2, has not been assigned any starship. It seems
from the definition of the PS relation that nulls are allowed. In some applications it may be
desirable to prohibit this situation (i.e., every employee must be assigned a starship). The
referencing relation’s schema definition can specify whether or not the foreign key attribute can
assume a null value.

Using SQL syntax, foreign keys can be specified as follows:

CREATE TABLE PS

Person_Name CHAR(15) NOT NULL,
Starship CHAR(20),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship)).

PERSON_NAME STARSHIP

James Kirk Enterprise

Mr. Spock <null>

Tim McKelley Apollo



Figure 2.2: Relation PS

It follows from the definition of the foreign key that there is an identical matching primary key
value in the referenced relation for every foreign key value in the referencing relation. It is
important to maintain the integrity between the referencing values (foreign key values) and the
referenced values (primary key values).

Example 3. Consider the relation schema PR (Person_Name, Rank), which contains the employee
name (Person_Name) and the rank of the employee (Rank). Person_Name is the primary key for
the relation schema. Person_Name is also the foreign key referring to relation schema PS.

The relation schema PR can be expressed in SQL as follows:

CREATE TABLE PR

(Person_Name CHAR(20) NOT NULL,
Rank CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Person_Name) REFERENCES PS (Person Name))

Here, the relation schema PR references the relation schema PS given in Example 2. In addition,
the relation schema PS in Example 2 references the relation schema SOD. Since there is a
referential constraintfrom PRto PS, and alsofrom PSto SOD, relation schema PS becomes both
a referencing relation and a referenced relation, see Figure 2.3.

Figure 2.3: Referential Constraints in Relations PR, PS, and SOD

RankPerson_Name

Primary key PR

Foreign key

Primary key

StarshipPerson_Name

Foreign key

PS

Primary key

Starship Objective Destination

SOD



This can be depicted as a referential path from PR to SOD as follows:

PR➝ PS ➝ SOD

Referential Cycles: Closed referential paths, or referential paths that point back to the starting
relation, are referred to asreferential cycles. In general, the referential cycle including n
relations (where n > 1) can be represented as follows [Date 86, 90]:

Rn ➝  Rn-1 ➝  Rn-2 ➝ ...➝  R2 ➝  R1 ➝  Rn.

Referential cycles are of interest since they can cause insertion problems. In the presence of
referential cycles, it is necessary that one of the following constraints be true; otherwise, it is
impossible to insert the first tuple in any or each of the relations:

1. One of the foreign keys in the referential cycle must be allowed to have a null value, or

2. The constraint check should be done only at the end-of-transaction (i.e., when the
transaction commits).

A self-referencing relation is a special case of a referential cycle that includes exactly one relation:
a relation can have multiple foreign keys corresponding to different relations.

Some important concepts related to the terms defined in this section can be summarized as follows:

• A primary key of a relation cannot have a null value in any tuple within that relation (entity
integrity) and each primary key must be unique (property of a primary key).

• Foreign keys can have null values. For example, in Figure 2.2 the employee Mr. Spock has
not been assigned any starship as yet; therefore, the Starship value for Mr. Spock is null.
(Note: If in a specific instance it is desired to prohibit null values for foreign keys, this can
be done by using a NOT NULL clause for the attributes in the foreign key when the
relation is created.)

• For referential integrity, every non-null value of a foreign key must be matched by an
identical primary key value in the referenced relation. But the converse need not be true;
for example, starship Saratoga in Figure 2.1 has no employee assigned to it in Figure 2.2.

• A relation can be a referenced relation, as well as a referencing relation.

2.2 REFERENTIAL INTEGRITY RULES

Whenever two or more relations are related through referential constraints, it is necessary that
references be kept consistent in the face of insertions, deletions, and updates to these relations. Date
identifies several actions which can be taken to maintain consistency of references [Date 90].
Exactly which action is chosen for a particular relation depends on the behavior desired by the
underlying application. These possible actions are discussed in the following subsections.



2.2.1 DELETE

When the target of a foreign key is deleted it could result in a dangling reference. Some action is
needed to make sure this does not happen. Four options that may be specified for the referenced
relation are RESTRICTED-delete, CASCADES-delete, NULLIFIES-delete, and SET
DEFALILT-delete. Each of these is explained in turn.

RESTRICTED-delete

If the RESTRICTED-deleteoption is specified, the primary key value in the referenced relation
cannot be deleted as long as there exists at least one matching foreign key value in the referencing
relation. The deletion of the referenced value is restricted to the case where there is no
corresponding referencing value in the referencing relation.

For instance, suppose an attempt is made to delete the starship Apollo from the relation SOD. Since
the referencing relation PS refers to the relation SOD through the attribute Starship, under the
RESTRICTED-delete rule, this deletion cannot be performed as there is a tuple in PS referencing
starship Apollo. The delete is denied and the two relations would remain unchanged.

The syntax for specifying the RESTRICTED-delete rule may be given as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON DELETE RESTRICT)

CASCADES-delete

Under theCASCADES-delete option, whenever the target tuple of a foreign key is deleted, all
referencing foreign key tuples are also deleted. In the previous example, if an attempt is made to
delete the starship Apollo from the relation SOD, the delete would be cascaded to the relation PS
and the employee tuples referencing the starship Apollo would also be deleted. After such a
CASCADES-delete operation, the relations SOD and PD would change to the form given in Figure
2.4.



SOD

PS

Figure 2.4: Relations SOD and PS after Starship = “Apollo” is Deleted under the
CASCADES-Delete Rule

In SQL, the CASCADES-delete rule can be specified as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON DELETE CASCADE)

NULLIFIES-delete

Whenever theNULLIFIES-delete option is specified for a foreign key, the referencing foreign key
attribute values will be set to a null value when the tuple containing the referenced value is deleted.
In the example given earlier, when starship Apollo is deleted, the foreign key value, for all tuples
referencing Apollo in relation PS, is set to null. The new state of the relations is as shown in Figure
2.5.

STARSHIP OBJECTIVE DESTINATION

Enterprise Exploration Talos

Voyager Spying Mars

Saratoga Mining Rigel

PERSON_NAME STARSHIP

James Kirk Enterprise

Mr. Spock <null>



SOD

PS

Figure 2.5: Relations SOD and PS after Starship = “Apollo” is Deleted under the
NULLIFIES-Delete Rule

Before setting the referencing value to null, it is important to make sure that the relation schema
allows a null value for the foreign key attribute. Otherwise, there will be a conflict.

The NULLIFIES-delete rule can be expressed in SQL as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON DELETE SET NULL)

SET DEFAULT-delete

The SQL2 [ANSI 92] and SQL3 [ANSI 94] standards provide yet another referential action for the
delete operation, called SET DEFAULT. This option is similar to the NULLIFIES delete rule
given above. The only difference is that the SET DEFAULT option contains a default clause that
specifies the default value for the attribute. The default value may be a null or a non-null value. If
the referential action specifies the SET DEFAULT option, then each referencing attribute is
defined by an implicit or explicit default clause. If the default value is null, then SET DEFAULT
is equivalent to a SET NULL.

STARSHIP OBJECTIVE DESTINATION

Enterprise Exploration Talos

Voyager Spying Mars

Saratoga Mining Rigel

PERSON_NAME STARSHIP

James Kirk Enterprise

Mr. Spock <null>

Tim McKelley <null>



The SQL syntax for the SET DEFAULT-delete rule is as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON DELETE SET DEFAULT < option>)

The default option is specified in the <option> field.

2.2.2 UPDATE of Referenced Relation

Changing the primary key values in a referenced relation could violate referential integrity unless
appropriate action is taken. There are different options which can be specified for the referencing
relation whenever an update is made to the target primary key values of a referenced relation. The
possible options are RESTRICTED-update, CASCADES-update, NULLIFIES-update, or SET
DEFAULT-update.

RESTRICTED-update

Under theRESTRICTED-updateoption, an update to the target primary key values of a referenced
relation cannot be made as long as there exists at least one matching foreign key value in the
referencing relation. The update to the referenced tuple is restricted to the case where there are no
matching referencing tuples.

As an example, suppose an attempt is made to update the name of the starship from Enterprise to
USS Enterprise in relation SOD shown in Figure 2.1. As there is an employee assigned to the ship,
the update is rejected. The relations SOD and PS remain unchanged, and look like Figures 2.1 and
2.2.

The syntax for specifying the RESTRICTED-update option may be specified as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON UPDATE RESTRICT)

CASCADES-update

If the CASCADES-update option is specified for a referencing relation, whenever an update is
made to the referenced attribute, all changes are cascaded to the matching referencing attributes.



This means that whenever the target value of a foreign key is modified, all referencing foreign key
values are also similarly modified. Consider the example where an attempt is made to update the
name of the starship from Enterprise to USS Enterprise in the relation schema SOD. Under
CASCADE-update, the update is cascaded to the matching referencing tuples in the relation
schema PS. For the employee assigned to starship Enterprise, the name is updated to USS
Enterprise. The new state of the two relations SOD and PS is shown in Figure 2.6.

In SQL, the CASCADE-update option can be expressed as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON UPDATE CASCADE)

SOD

PS

Figure 2.6: Relations SOD and PS after Starship = “Enterprise” is Updated to the Value
“USS Enterprise” under the CASCADES-Update Rule

STARSHIP OBJECTIVE DESTINATION
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NULLIFIES-update

Under theNULLIFIES-update option, the referencing foreign key attribute values are set to null
whenever the target primary key values in the referenced relation are updated. In the example given
earlier, when the name of the starship is updated from Enterprise to USS Enterprise, the Starship
for the employee assigned to Enterprise is set to null. The new state of the relations is shown in
Figure 2.7.

Before setting the referencing value to null, it is important to make sure that the schema definition
allows a null value for the foreign key attribute. If the nulls rule does not allow a null value, then
there will be a conflict between the two integrity rules.

The NULLIFIES-update rule is expressed in SQL syntax as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(I5),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON UPDATE SET NULL)

SOD

PS

Figure 2.7: Relations SOD and PS after Starship = “Enterprise” is Updated to the Value
“USS Enterprise” under the NULLIFIES Update Rule

STARSHIP OBJECTIVE DESTINATION
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SET DEFAULT-update

SQL2 and SQL3 define another referential constraint for update, which is SET DEFAULT. If the
referential constraint specifies the SET DEFAULT option, then each referencing attribute is
defined by an implicit or explicit default clause. The default clause specifies the default value for
the attribute, and the default value may be a null or a non-null value. If the default value is null,
then the SET DEFAULT option can be considered equivalent to the NULLIFIES update rule.

The SQL syntax for the SET DEFAULT-update rule is as follows:

CREATE TABLE PS

(Person_Name CHAR(20) NOT NULL,
Starship CHAR(15),
PRIMARY KEY (Person_Name),
FOREIGN KEY (Starship) REFERENCES SOD (Starship),
ON UPDATE SET DEFAULT <option>)

The default option is specified in the <option> field.

2.2.3 INSERT or UPDATE of Referencing Relation

When a tuple is inserted into a relation with a foreign key or a tuple in the relation is updated, the
insertion (or update) of a foreign key value should be in accordance with referential integrity. Each
foreign key value must be NULL or have an identical matching primary key value in the referenced
relation. This requirement can be enforced by disallowing the insert (or update) unless the
condition is met or by setting the foreign key to a default value or null (if nulls are allowed) when
the condition is not met.

2.2.4 Additional Rules

In spite of the many integrity rules discussed in this section, the rules above are not exhaustive.
Additional options include conversation with the end user and transferring information to some
other files. For instance, an additional option in SQL3 is the PENDANT specification, which
implies that each primary key value in the referenced relation is the same as some foreign key value
in the referencing relation. For example, if the referential constraint for the relation EMP is as
shown below, then as soon as the last employee in a particular department is deleted, the
department will also be deleted.

FOREIGN KEY (Starship) REFERENCES [PENDANT] SOD(Starship)

2.3 PROBLEMS WITH REFERENTIAL INTEGRITY CONSTRAINTS

Referential integrity plays a major role in RDBMSs where it is employed to express existence
dependencies. The concept of referential integrity seems to be simple, but it has been a topic of
discussion for the past several years [Markowitz 90; Horowitz 92]. The operational definitions are
not precise and, therefore, lead to some anomalies. Confusion surrounds both the concept itself and



its implementation in RDBMSs. There is a need to carefully examine the data manipulation
problems caused by certain referential integrity structures and to find ways to avoid these
problems.

In a RDBMS, a single update or delete can affect multiple tuples through the application of
referential integrity rules (e.g., cascading deletes or updates). It is necessary for these processes to
be deterministic. In other words, the final state of the database should be a function of the initial
state of the database, and the specific statement to be executed. At times, certain referential
constraints associated with relations may block update or deletion of some tuples because of
conflicting referential constraint specifications, thus making the outcome of the update or delete
statement unpredictable. Some of the problems that have been identified are dependency on the
order in which referential integrity constraints are applied, referential cycles, and dependency on
the order in which the tuples are processed in response to a query. Discussion of these problems in
detail is outside the scope of this document.



SECTION 3

ENTITY AND REFERENTIAL INTEGRITY IN MLS DATABASES

Before entity and referential integrity can be defined for multilevel relations, it is necessary to
extend the basic concepts of classical (single-level) relations to the multilevel context. In MLS
databases, data are assigned different security levels and each user is assigned a clearance level.
Each user can only access data they are cleared for based on the user’s security clearance. As a
consequence the meaning of relations becomes more complicated in the multilevel world, and
there is no clear consensus regarding the exact definition of a multilevel relational model.

To develop an MLS database, it is necessary to (1) define asecurity policy, (2) develop
mechanisms that support the policy, and (3) get the necessary assurance that the system developed
is secure. This section first reviews the basic concepts for the multilevel relational data model, then
defines entity and referential integrity constraints for multilevel relations.

3.1 RELATED TCSEC REQUIREMENTS

The TCSEC imposes two types of requirements which affect how entity and referential integrity
can be enforced in a DBMS targeted to meet the TCSEC requirements at B1 and above. A DBMS
targeted for Class B1 or above must enforce a MAC policy over all subjects and storage objects it
controls. This places requirements on the sensitivity labels of elements of primary and foreign keys
and on the relationships between sensitivity levels of foreign keys and the primary keys they
reference. For a DBMS targeted at Class B2 or above, the TCSEC requires a thorough search for
covert channels (storage channels only at Class B2). In the multilevel context, enforcement of the
uniqueness of primary keys and enforcement of referential integrity can create significant covert
channels. Guidelines on acceptable bandwidths for covert channels are given in Section 8 of the
TCSEC. This section specifically addresses the implications of direct enforcement of MAC
controls (as required at B1 and above). The implications of integrity enforcement on covert
channels is covered in Section 4. A determination of precisely which approaches to enforcing
entity and referential integrity will be considered compliant with the TCSEC requirements will
evolve over time as the Evaluation Community publishes official interpretations on this subject.
However, with the successful evaluation of Trusted Oracle7 DBMS MAC Mode with an
unmodified integrity mechanism, precedence has been set for Class B1 DBMSs [Oracle 94].

3.2 BASIC CONCEPTS IN MULTILEVEL RELATIONS

The basic model for multilevel relations needs to be defined with a MAC policy in mind. The MAC
policy for MLS databases is often based on the Bell-LaPadula model [Bell 76], which is stated in
terms of subjects and objects. A subject is an active entity, such as a process that can request access
to objects, whereas an object1 is a passive entity, such as a record, a file, or a field within a record.
Every subject is assigned a clearance level and every object a classification level. Classification
levels and clearances are collectively referred to assecurity levels, and form a lattice. Each security
level has two components: a hierarchical component and a set (possibly empty) of unordered

1. “object”, as used in Bell and LaPadula model, is not the same as an object-oriented DBMS (OODBMS) where
objects areactive containers of information.



categories. A security level c1 is said todominate security level c2, in the partial order, if (1) the
hierarchical component of c1 is greater than or equal to that of c2, and (2) all categories in c2 are
included in those of c1. A security level c1 strictly dominates security level c2, in the partial order,
if (1) c1 dominates c2, and (2) c1 does not equal c2. The following are two necessary conditions in
the Bell-LaPadula model [Bell 76; DoD 85]:

1. The Simple Security Condition or “No Read Ups”: A subject can only read objects at a
security level dominated by the subject’s level, and

2. The *-Property (Star Property) or “No Write Downs”: A subject can only write objects
at a security level that dominates the subject’s level.

To apply these concepts to a DBMS it is necessary to determine the granularity of the objects
protected by MAC, i.e., the storage objects. Security levels are then associated with these storage
objects. Work on MLS databases has focused on four choices for assigning security levels to data
stored in a relation. One can assign security levels to entire relations, to individual tuples (rows) of
a relation, to individual attributes (columns) of a relation, or to individual elements of a relation.
In the definitions below, the most general case is considered, in which security levels are assigned
to individual data elements stored in relations. However, since tuple level labeling is used in all
DBMS products evaluated to date, the concepts are also considered in the (simplified) context of
tuple level labeling.

A relation schema in the multilevel context not only contains all its data attributes, but also includes
the corresponding security level for each data attribute. Formal definitions of a multilevel relation
schema and multilevel relations are as follows [Denning 87]:

Relation Schema: A multilevel relation schema has the following form:

R(A1, C1, A2, C2, ... , An, Cn).

EachAi is a data attribute over some domainDi andCi is the classification attribute ofAi. The
domain ofCi, i = 1, ...,n is some set consisting of security levels.

If tuple level labeling is used, there will only be one classification attribute for the entire tuple:

R(A1, A2, ... , An, C).

For a multilevel logical relation schemaR, there is a corresponding relationRc per security level
in the security lattice. A user having a clearance at a security levelc sees the relationRc, which
contains data at security level c or below. More formally,

Relations: A relation at a security levelc has the following form:

Rc(A1, C1, A2, C2, ... , An, Cn)



Rc consists of a set of tuples of the form(a1, c1, a2, .2.... ,an, cn), where eachai  lies in the domain
Di or ai is null,c > ci, ci, i = 1 ... ,n. Even ifai is null, its classification attributeci is never null.

When an attribute value ai is null, there are two reasonable possibilities for the corresponding
security level value:ci could be assigned a value that is identical toc, or the security level of the
attributes constituting the primary key. In this document,ci would be assigned a value consistent
with the second possibility.

If the security level of the primary key value is not dominated byc in a tuple, then that tuple is not
shown inRc at all. If the security level of the primary key value is dominated byc, then that tuple
is shown inRc; however, any attribute value with a security level not dominated byc, is shown
having a null value with the corresponding security level the same as that of the primary key value.

For tuple level labeling,Rc consists of those tuples whose security level is dominated byc.

These concepts can be better explained with the help of an example taken from [Jajodia 91].

Example 4. Consider the relation schema SOD given in Example 1. Starship is the primary key of
the relation schema SOD, and the security levels are assigned at the granularity of individual data
elements. The hierarchical order usually followed is Top Secret (TS), Secret (S), Confidential (C),
and Unclassified (U). A user with a Secret clearance will see the entire multilevel relation SODS,
while a user with an Unclassified clearance will see the Unclassified instance SODU as shown in
Figure 3.1.

SODS

SODU

Figure 3.1: Different SOD Views Based on Access Class

STARSHIP OBJECTIVE DESTINATION
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STARSHIP OBJECTIVE DESTINATION
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Voyager U <null> <nulls> U



3.3 THE CONCEPT OF PRIMARY KEY IN MULTILEVEL RELATIONS

The notion of a primary key is a fundamental concept in the world of single-level relational
databases. The primary key is used to maintain integrity of relations, it is used during the database
design, and it is also used for storage and retrieval purposes. The primary key for a single-level
relation must satisfy theuniqueness property and theminimality property, as discussed in Section
2.1. Entity integrity requires that the primary key serves as a unique identifier of each tuple in the
relation and that it does not contain a null value. The uniqueness property can create covert
channels as discussed in Section 4. One approach to avoiding these channels involves augmenting
the user-defined primary key with security level attributes associated with the primary key
attributes. However, in the remainder of this document it is assumed that there is a user-specified
primary key consisting of a subset of the data attributes and not including the security level
[Denning 87]. It is called the apparent primary key of the multilevel relation schema.

3.4 ENTITY INTEGRITY IN MULTILEVEL RELATIONS

A relation schema R will be assumed to have a user-defined apparent primary key consisting of
one or more data attributes of R. It will be denoted by PK. The entity integrity property of the
standard relational model can be extended to the multilevel environment by defining the three
requirements given below, which are applicable only to element level classification [Denning 87].
The three requirements are automatically met for tuple level classification.

The first requirement is the same as for the standard relational model, that no tuple in an Rc have
a null value for any attribute in PK. The second requirement states that the PK values should be
uniformly classified; otherwise, the PK value would not be wholly non-null or wholly null for
some security level. The third requirement states that the security level of values for the attributes
not in PK must dominate the security level of the PK attributes; otherwise, there could be instances
where non-null attributes would be associated with a null primary key when viewed below the level
of the primary key. These three requirements can be more formally defined as follows:

A multilevel relation schema R is said to satisfyentity integrity, if for all relation instances Rc
of Rand, tuple t∈ Rc,

1. If Ai  ∈ PK, then t[Ai] ≠ null,

2. If Ai, Aj ∈ PX, then t[Ci] = t[Cj], i.e., PK is said to be uniformly classified, and

3. If Ai ∉ PK, then t[Ci] ≥ t[C[PK]] (where C[PK] is the classification of the apparent
primary key PK).

3.5 REFERENTIAL INTEGRITY IN MULTILEVEL RELATIONS

As discussed in the previous section, a non-null foreign key value in a referencing relation should
always have a matching primary key value in the referenced relation. In an MLS database, this
requirement has implications for the relationship among the security levels of the attributes of the
foreign key and the security level of the referenced primary key. In addition, the possible actions
which could be taken to enforce referential integrity on update and deletion can introduce covert



channels as discussed in Section 4. Relation schemas, in the following example, will be used to
illustrate the different situations in which a security conflict may occur.

Example 5. Consider the multilevel relation schema PS given in Example 2. Person_Name is the
apparent primary key of the relation schema PS, and Starship is the foreign key of PS, which refers
to the relation schema SOD. Typical relation instances for SOD and PS are given in Figure 3.2.
Note that in the example schema only the attribute names are part of the primary key and the
foreign key. The respective security levels are not a part of the key. Therefore, there are some
tuples with the security level of the foreign key in relation PS higher or lower than the security level
of the corresponding primary key in relation SOD. The example includes such tuples to explain the
conflicts arising when the security levels are at different levels.

SOD

PS

Figure 3.2: Typical Relation Instances for SOD and PS

Recall the definition of referential integrity for standard relational databases:

Referential Integrity: If FK is a foreign key ofR1 referencingR2, PK is the primary key of
R2, t1 is a tuple of an instance R1 ofR1, and t2 is a tuple of an instance R2 ofR2, then

1. t1 [FK] is either wholly null or wholly non-null, and

2. Whenever t1[FK] is non-null, there is a tuple t2 in R2 such that t1[FK] = t2[PK].

For MLS databases we need to have this property be true for the database as seen from any security
level. Assume tl [FK] is not wholly null as viewed from some security level. The first requirement
above says that it must then be wholly non-null. If the attribute values making up FK did not all
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have the same security level, there would be some security level for which some of the attribute
values in FK would be null and others non-null. Since this is not allowed, all attribute values in FK
must have the same security level. If all attribute values of FK are null, then by convention they
are assigned the same security level. This argument gives us the first rule for referential integrity.

Rule 1. The foreign key of the referencing relation must be uniformly classified (i.e., all
attribute values that make up the foreign key must be assigned an identical security level).

This rule is automatically satisfied for tuple level labeling.

The second part of referential integrity requires that if the foreign key FK is not null then there is
a matching primary key PK in the referenced relation R2. For this to be true for the database as
seen from the security level of FK, the matching PK must be visible at the security level of FK.
Hence, the security level of FK must dominate the security level of the matching primary key PK.
This gives us the second rule of referential integrity.

Rule 2. The security level of the foreign key must dominate the security level of the primary
key of the referenced tuple (i.e., C[FK]> C[PK]).

For tuple level labeling, this rule reduces to the requirement that the security level of the referenced
tuple must be dominated by the security level of the referencing tuple.

PS

SOD

Figure 3.3: Unclassified Instances of PS and SOD Relations

PERSON_NAME STARSHIP

James Kirk U Enterprise U

Mr. Spock U Null U
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Example 6. Consider the relations SOD and PS as shown in Figure 3.2. An Unclassified user sees
the two relations as given in Figure 3.3. For the Unclassified user, the referential integrity property
has been violated because there is no Starship “Apollo” visible to the Unclassified user. From the
Unclassified user’s point of view either Starship “Apollo” does not exist, which is a referential
integrity error, or it references a classified Starship that is not displayed to the user, which is a
security error.

3.6 ENFORCEMENT OF INTEGRITY CONSTRAINTS

Most of the research work on the topics covered in this document has either focused on
polyinstantiation as a mechanism to deal with primary key requirements and entity integrity or has
dealt with the broader question of inference. Meadows did some early work on the conflicts of
integrity and security that mainly considered approaches for maximizing integrity while
eliminating inference channels [Meadows 88]. Polyinstantiation and inference research are
covered in the appropriate TDI companion documents. However, there are several works dealing
with aspects of database integrity which go beyond just entity and referential integrity and do not
fit into those areas.

Notargiacomo and Wiseman have explored separation of duty as an approach to protect data from
unauthorized modification within MLS databases [Notargiacomo 91; Wiseman 90]. The concept
of applying separation of duty to integrity enforcement is to ensure that, before a modification to
the state is made, sufficient people agree that it properly reflects the real world requirement. The
fact that certain users are unlikely to collude with a particular change, an underlying assumption,
is indicated by the way roles are assigned to users. Notargiacomo explores the issues of integrating
an interpretation of the Clark-Wilson integrity model [Clark 87, 88] into a multilevel DBMS
security policy. Her preliminary investigation raised issues on object granularity; interaction of
MAC, DAC, and integrity policies; application of Clark-Wilson type controls to classes of users;
and the need for nested transactions. Wiseman sees the high level abstract view of separation of
duty as several people agreeing to change state. Integrity can be encouraged by enforcing
constraints which ensure the state is always valid and by subjecting inputs to separation of duty.

Reind van de Reit and Beukering describe how constraints involving integrity and security can be
specified in MOXUM, their active object-oriented knowledge-base system [van de Reit 94]. Their
premise is that changes to the database should be governed by rules in the form of integrity
constraints and security checks. In this case, integrity constraints refer to the quality of the data,
while security constraints refer to protection and access rights. Both kinds of constraints are
specified in MOKUM as Prolog predicates and are not separated. Each time some manipulation on
an object or a collection mentioned in a constraint is performed (create/change/inspect/destroy),
some check has to be performed. The Prolog scripts regulate access to object collections and
enforce integrity constraints through triggers. This implies a need to extend the Trusted Computing
Base to include the Prolog compiler which is problematic with respect to assurance.

In addition to considering the entity and referential integrity conflicts with security, Maimone and
Allen provide alternatives to resolving problems that arise in maintaining transaction integrity and
value constraints [Maimone 91]. A security conflict with transaction integrity may arise if a single
transaction is designed so that some steps must perform write operations at different security



levels. Value constraints are defined integrity rules that may restrict the valid values for a data
element. A conflict arises when some existing data classified above the label of the user activating
the constraint does not meet constraints defined after object creation. They make the distinction
between the use of triggers and constraints for enforcing integrity rules. The utility of declarative
constraints, including primary and foreign key and value or domain constraints, is that the
constraint declares an invariant property, detailing the meaning of a consistent state.

Marks and Jajodia [Jajodia 94] have developed a technique to enforce certain integrity constraints
and minimize the amount of sensitive information disclosed. They transform multilevel constraints
into constraints that can be enforced at individual levels and approximate enforcement of the
multilevel constraint.



SECTION 4

COVERT CHANNELS

The B2 or higher MAC requirements of the TCSEC specify that an MLS system must additionally
guard against indirect accesses through information flows. It is recognized that some covert
channels will exist in any system. The TCSEC provides guidelines on what actions must be taken
for channels depending on the bandwidth of the channel. Enforcement of integrity constraints can
create covert channels. These channels are discussed in this section. Interpretations indicating
precisely what channels will be deemed acceptable for systems evaluated against various TCSEC
levels will be developed as the Evaluation Community deals with specific vendor implementations.

4.1 PRIMARY KEY UNIQUENESS

Problems arise in multilevel relations when a user at a lower security level tries to enter a tuple with
the same primary key value as that of an existing tuple at a higher security level or when a user
tries to update the primary key attribute to a value that already exists at a higher level. This insert/
update cannot be allowed if primary key uniqueness is to be preserved. On the other hand, if the
user is not allowed to insert the primary key value, then there exists a covert channel. The following
example provides a concrete illustration.

Example 7. Consider the multilevel relation schema SOD of Example 4 in Section 3.2; the actual
relation is the same as the Secret instance shown in Figure 3.3. Suppose the Unclassified user, who
sees the Unclassified instance in Figure 3.3, attempts to update the missing values in the second
tuple corresponding to the starship “Voyager.” If the user is allowed to do this update, then there
will be two tuples corresponding to the primary key value of Starship “Voyager” in the Secret
instance, leading to a violation of the primary key constraint, as shown in Figure 4.1. But if the
Unclassified user’s attempt is rejected, then there is a channel. Since this is unacceptable, a way
must be found to deal with the existence of both tuples in the Secret instance.

Figure 4.1: SOD After Insertion of Tuple Corresponding to Starship = “Voyager” by
Unclassified User

Since the user can infer that a Secret tuple exists with the same primary key the user is attempting
to insert, this channel can be viewed as an example of inference. However, it also represents a
covert channel because a Secret process can insert or delete tuples with a given primary key and
this action could be detected by the Unclassified user. To avoid this channel, both the Secret tuple
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and the Unclassified tuple for the starship “Voyager” must somehow co-exist in the instance at the
Secret level.

These security considerations have led to the notion of polyinstantiation [Denning 87].
Polyinstantiation forces a relation to contain multiple tuples with the same primary key but
distinguishable by their classification levels or by the non-primary key attributes of the relation
[Lunt 91]. It is because the user designated primary key must be augmented with classification
levels to maintain primary key uniqueness in a polyinstantiated database that we have used
Denning'’ term apparent primary key for the user-specified primary key. Jajodia contends that the
use of polyinstantiation for cover stories needs to be confined to those cases where it is intended
since uncontrolled use of polyinstantiation leads to further loss of integrity and confusion with the
semantics of the relational data model [Jajodia 90].

The debate continues as to whether polyinstantiation is needed in multilevel relations or not
[Sandhu 91]. If polyinstantiation is not required in multilevel relations, then there must be a
solution to close channels. If polyinstantiation is used, then the question is how polyinstantiation
should be managed. Burns maintains that as a result of the fundamental conflict with enforcing
confidentiality and secrecy of information in an MLS database with integrity, DBMS products will
have to be expanded to include the ability to correct the errors and inconsistencies introduced by
polyinstantiation [Burns 90a]. A thorough discussion of all the issues associated with
polyinstantiation is beyond the scope of this document, but is covered in another volume in this
series:Polyinstantiation Issues in Multilevel Secure Database Management Systems [Poly 96]. For
the purpose of this document, the discussion of polyinstantiation is confined to the impact it has on
referential integrity.

4.2 ENFORCEMENT OF REFERENTIAL INTEGRITY RULES

Section 3 showed that for referential integrity in an MLS database, the security level of the foreign
key must dominate the security level of the primary key of the referenced tuple (C [FK] ≥ C[PX]).
This requirement guarantees that the referenced primary key will be visible to any user who sees
the foreign key as non-null. However, the situation is somewhat more complicated if the referenced
relation is polyinstantiated. In this event, there may be more than one tuple with an apparent
primary key matching FK. Some method must be used to uniquely and consistently determine
which primary key will be considered to be the referenced primary key. One approach is to
augment FK with the security level of its attributes (the tuple security level if tuple level labeling
is used). If that approach is used, a matching PK will have the same security level as FX and the
requirement on the relationship between security levels of PK and FK becomes C[FK] = C[PK].

Enforcement of referential integrity through the rules described in Section 2.2 can result in covert
channels. These channels are discussed below. The discussion is divided into the two permitted
cases: C[FK] = C[PK] and C[FK] > C[PK].

4.2.1 Enforcement of Integrity Rules When C[FK] = C[PK]

To study the enforcement of integrity rules when the security level of the referencing tuple and the
security level of the referenced tuple are the same, we need to look at the cases of the four different
levels of granularity in multilevel relations. For relations with relation level labeling or tuple level



labeling, all the integrity rules are usable without modification because this case can be considered
to be equivalent to relationships occurring in a single-level database. For attribute and element
level labeling there is a potential channel for the CASCADFS-delete rule. All other rules can be
enforced without any problem. This channel can be better explained with the help of an example.

Example 8. Consider the two relations SOD and PS as given in Figure 4.2. The security level of
the foreign key in relation PS in this example is the same as the security level of the referenced
primary key in relation SOD. For the second tuple in relation PS, an Unclassified user oily sees the
attribute Person_Name. The user is not cleared to see the value of Starship for this tuple and also
the user cannot see the corresponding referenced tuple in relation SOD. Suppose a Confidential
user comes in and attempts to delete the second tuple in relation SOD where Starship = “Saratoga.”
If the delete rule specified is a CASCADES-delete, then the referencing tuple in PS is also deleted.
An Unclassified user now will not see the attribute value Person_Name = “Mr. Spock” any more,
and this causes a channel.

PS

SOD

Figure 4.2: Relation PS and SOD when C[FK] = C[PK]

The channel in this case can be avoided if the equivalence of the security levels of the foreign key
and the referenced primary key is extended. If the security level of the entire referencing tuple is
the same as the security level of the entire referenced tuple, then no violations occur when
enforcing the insert, delete, and update rules. This fact has been acknowledged in the SeaView
model [Lunt 90] and the referential secrecy model given by Burns [Burns 90b]. Burns also suggests
selective enforcement of referential integrity in those cases where the security level of both the
referencing relation and the referenced relation are not the same, assuming that the channel either
can be monitored or is deemed not to cause a serious threat.

PERSON_NAME STARSHIP

James Kirk U Enterprise U

Mr. Spock U Saratoga C

STARSHIP OBJECTIVE DESTINATION

Enterprise U Exploration C Talos C

Saratoga C Mining C Rigel C



4.2.2 Enforcement of Integrity Rules When C[FK] > C[PK]

Now the final case will be considered where the security level of the referencing tuple dominates
the security level of the referenced tuple. Each of the integrity rules for insert, delete, and update
will be considered individually, and the effect of the dominance of the referencing tuple’s security
level over that of the referenced tuple will be investigated. The effect of different levels of labeling
granularity in multilevel relations upon enforcement of integrity will also be considered.
Throughout this discussion, we will assume that either the relations are not polyinstantiated or a
consistent method is employed to determine the unique primary key referred to by a foreign key.

1. Element-Level Granularity- Each of the integrity rules for insert, delete, and update is
examined individually for relations with element-level granularity, and conditions
violating the security constraints are investigated.

a. Delete Rule - As discussed in Section 2.2.1, the four delete rules for referential
integrity in single-level relations are as follows:

i. RESTRICTED-delete Rule

ii. CASCADES-delete Rule

iii. NULLIFIES-delete Rule

iv. SET-DEFAULT-delete Rule

Each of these rules is considered in turn for applicability to multilevel relations labeled at the
element level.

i. RESTRICTED-delete Rule - The RESTRICTED-delete rule states that the referenced
primary key tuple cannot be deleted as long as there is a corresponding referencing
tuple somewhere in the database. For instance, consider the relations SOD and PS
given in Figure 4.3.

In relation PS, the security level of the foreign key value Starship = “Voyager” dominates
the security level of the primary key value in the relation SOD. According to the
RESTRICTED-delete rule, as long as there is a tuple having foreign key value “Voyager”
in PS, the tuple with primary key value “Voyager” cannot be deleted from the relation
SOD. This gives rise to a channel, as there is a downward flow of information from the
high-level referencing foreign key to the low-level subject attempting to delete the tuple
containing the primary key. Therefore, the RESTRICTED-delete Rule violates secrecy
when the security level of the foreign key dominates the security level of the primary key
of the referenced tuple.

ii. CASCADES-delete Rule - If the delete rule specified is the CASCADES-delete rule,
then if the tuple in SOD with Starship = “Voyager” is deleted at the Unclassified level,
then the tuple in PS with Starship = “Voyager” at the Secret level should also be
deleted. In the relation instance of PS, given in Figure 4.3, Person_Name = “Mr.
Spock” is at the Unclassified level in the tuple containing Starship = “Voyager” at the
Secret level. Although the Unclassified user would not see any value for Starship in



the PS tuple with Person_Name = “Mr. Spock,” this tuple will be deleted as a result of
the CASCADES-delete action. Therefore, the user will be able to infer that the tuple
contained Starship = “Voyager.” This is a channel. If the attribute value “Mr. Spock”
were classified as Secret, there would have been no channel. Hence, the CASCADES-
delete rule fails in relations with element-level labeling and C[FK] > C[PK], if any
non-foreign key attribute value in the referencing tuple is at a lower security level than
the foreign key attribute value. Even though the CASCADES-delete rule is not invalid
for all the cases, channels exist that cannot be covered or be removed. Hence,
CASCADES-delete cannot be used for defining an integrity constraint in relations
with element-level labeling which allow a foreign key to strictly dominate its
corresponding primary key.

SOD

PS

Figure 4.3: Relations SOD and PS without Polyinstantiation

iii. NULLIFIES-delete Rule - If the delete rule specified is NULLIFIES-delete, then
the value of Starship = “Voyager” in relation PS is set to null when the tuple in SOD
for Starship = “Voyager” is deleted. This does not conflict with the security
constraints, as long aswrite-ups are allowed, since there would not be a downward
flow of information.

iv. SET DEFAULT-delete Rule - The argument for the SET DEFAULT-delete rule is
the same as for the NULLIFIES-delete rule. As previously noted, the SET
DEFAULT rule is equivalent to the NULLIFIES rule when null is specified as the
default.

In summary, when the foreign key value is higher than the security level of the primary key
value, then the NULLIFIES-delete rule and the SET DEFAULT-delete do not create
downward information flows. However, the RESTRICTED-delete and CASCADES-
delete rules can result in covert channels.

STARSHIP OBJECTIVE DESTINATION

Enterprise U Exploration U Talos U

Voyager U Spying S Mars S

Apollo S Spying S Moon S

PERSON_NAME STARSHIP

James Kirk U Enterprise U

Mr. Spock U Voyager S



b. UPDATE Rule - As discussed in Section 2.2.2, the four update rules for referential
integrity in single-level relations are as follows:

i. RESTRICTED-update Rule

ii. CASCADES-update Rule

iii. NULLIFIES-update Rule

iv. SET DEFAULT-update Rule

The following paragraphs discuss the application of the update rules to multilevel relations labeled
at the element level.

i. RESTRICTED-update Rule - Consider the relations SOD and PS given in Figure
4.2. In relation PS, the security level of the foreign key value Starship = “Voyager”
dominates that of the primary key value in the relation SOD. According to the
RESTRICTED-update rule, as long as there is a tuple having foreign key value
“Voyager” in PS, the primary key value “Voyager” cannot be updated in the
relation SOD. This gives rise to a channel because there is flow of information from
the high-level referencing foreign key to the low-level subject attempting to delete
the tuple containing the primary key. Therefore, the RESTRICTED-update Rule
will not work when updating a referenced tuple if the security level of the
referencing tuple dominates the security level of the referenced tuple.

ii. CASCADES-update Rule - The CASCADES-update Rule states that if the primary
key value Starship = “Voyager” in SOD is updated, then the foreign key value
Starship = “Voyager” in PS will also be updated. This does not conflict with the
security constraints, as long as write-ups are allowed, since there would not be a
downward flow of information.

iii. NULLIFIES-update Rule - The NULLIFIES-update Rule specifies that the value of
Starship = “Voyager” in relation PS be set to null if Starship = “Voyager” in SOD
is updated. Again, this does not conflict with the security constraints, as long as
write-ups are allowed, since there would not be a downward flow of information.

iv. SET DEFAULT-update Rule - The SET DEFAULT-update Rule does not violate
any security or integrity constraints when the security level of the foreign key
dominates the security level of the primary key. The explanation is the same as for
the NULLIFIES-update rule.

In summary, CASCADES-update, NULLIFIES-update, and SET DEFAULT-update do
not result in downward information flow. The RESTRICTED-update rule can result in a
covert channel.

c. INSERT Rule - The insert rule for integrity states that the insertion of a foreign key
value should comply with the referential integrity rules; that is, each foreign key value
in the referencing relation should have an identical primary key value in the referenced
relation. In MLS databases, it is important to ensure that there is no downward flow of



information when the insertion is made. If the security level of the referencing tuple
(foreign key value) dominates the security level of the referenced tuple (primary key
value), then there is no such possibility of a channel. If a higher user attempts to insert
a foreign key value, the user’s insertion is accepted or rejected based on the presence
or absence of the referenced value at the lower security level. There will be only an
upward flow of information, which means that both integrity and security rules are
satisfied. It should be noted that, unlike with polyinstantiated relations, there is no
confusion while inserting the tuples in the two relations.

SOD

PS

Figure 4.4: Relations with Tuple-Level Granularity

2. Tuple-Level Granularity - The argument for referential integrity control in relations with
tuple-level granularity is the same as the discussion above for element-level granularity. The only
difference is that instead of each data element having an individual security level, the entire tuple
in the relation is assigned a security level as shown in Figure 4.4. As is the case for element-level
granularity, a security conflict occurs when the RESTRICTED-update/delete option is enforced.
There is a downward flow of information when a low user tries to update/delete a target value, and
is allowed to do so depending on the absence of a matching referencing tuple at a higher level. All
other integrity rules are valid for relations with tuple-level granularity. The problem with
CASCADES-delete that occurs for element-level granularity does not occur with tuple-level
granularity because, for tuple-level granularity, each element in the tuple is explicitly assumed to
have the same security level as defined in the tuple class. As such, a user will never be in the
situation where he can view some attributes of a tuple but not others and then witness the tuple
vanish due to a cascading delete on attributes that the user is not cleared to see, which would be a
covert channel due to the inference of the high attribute’s value.

No. STARSHIP OBJECTIVE DESTINATION TC

1 Enterprise Exploration Talos U

2 Enterprise Spying Mars S

No. PERSON_NAME STARSHIP TC

3 James Kirk Enterprise U

4 Mr. Spock Enterprise S



3. Attribute-Level Granularity - As described earlier, attribute-level granularity means that each
attribute in a relation is assigned a single security level. All values of an attribute are classified at
the same level of security across all tuples in the relation. From the discussion in Section 3.5, to
maintain referential integrity, the security level of the foreign key attribute in the referencing
relation must dominate the security level of the primary key attribute in the referenced relation.

The case to be considered is where the security level of the foreign key attribute strictly dominates
the security level of the apparent primary key attribute. In this case, the relations SOD and PS are
as given in Figure 4.5.

SOD

PS

Figure 4.5: Relations with Attribute-Level Granularity

Following the discussion earlier, it can be observed that all the integrity rules can be applied to the
case above except for the RESTRICTED-delete or the RESTRICTED-update rule. Under
RESTRICTED-update or delete, whenever a lower subject tries to update or delete the tuple
containing a particular primary key attribute value, the attempt is accepted or rejected based on the
presence of a matching value in the foreign key attribute at the higher security level. This gives rise
to a channel.

4. Relation-Level Granularity - As defined earlier, a relation with relation-level granularity has
a single classification level defined for the entire relation, or in other words, all data elements in
the relation are at the same security level.

For instance, consider the relation schema SOD, given in Example 4, and the relation
schema PS, given in Example 6. Relation PS references relation SOD, with Starship being
the foreign key attribute. The security level of the primary key “Starship” (i.e., C[PK]) is
the same as the security level of the relation SOD, and the security level of the foreign key
“Starship” (i.e., C[FK]) is the same as the security level of the relation PS. Based on the
restrictions derived in rule 2 in Section 3.5, the security level of the foreign key should

No. STARSHIP U OBJECTIVE S DESTINATION U

1 Enterprise Exploration Talos

2 Voyager Spying Mars

No. PERSON_NAME U STARSHIP S

3 James Kirk Enterprise

4 Mr. Spock Enterprise



always dominate the security level of the primary key. Therefore, for relation-level
granularity, the security level of the relation PS should dominate the security level of the
relation SOD.

Let the security level of relation SOD be Unclassified and of PS be Secret. Then C[FK] =
Secret and C[PK] = Unclassified (i.e., C[FK] > C[PK]). From the discussion in Section 3.5,
it can be seen that, if C[FK] > C[PK], then all integrity rules except RESTRICTED-delete
and RESTRICTED-update can be used, without any covert channels.

The table below gives a summary of the integrity rules that apply to different levels of granularity
without compromising secrecy by permitting downward information flows. In the case of
polyinstantiated relations it is necessary in all cases that there be a method to unambiguously
determine which instance of the apparent key is referenced.

Table 4.1: Summary of Covert Channels in Referential Integrity Rules for C[FK] > C[PK]

4.3 RELATION TO DBMS ARCHITECTURE

A Trusted Computing Base (TCB) consists of one or more sub-elements that together enforce a
security policy over a system. Complex systems distribute policy enforcement to various sub-
elements. While determining the trust characteristics of a complex system on the basis of a
collection of subparts is not well understood, there are approaches for arguing about composition
of systems.

Level of Granularity Element Tuple Attribute Relation

Insert Rule OK OK OK OK

Delete Rules:

RESTRICTED-delete Channel Channel Channel Channel

CASCADES-delete Channel OK OK OK

NULLIFIES-delete OK OK OK OK

SET-DEFAULT-
delete

OK OK OK OK

Update Rules:

RESTRICTED-update Channel Channel Channel Channel

CASCADES-update OK OK OK OK

NULLIFIES-update OK OK OK OK

SET-DEFAULT-
update

OK OK OK OK



The approach used in the TDI is to view the system as being composed of hierarchically-ordered
systems. There is a “privilege” hierarchy characterized by dependency. The construct developed
for dealing with layered systems is TCB subsets. A TCB subset enforces a security policy over a
set of resources for that layer, and may or may not include hardware. If a TCB subset can be shown
to be constrained and unprivileged relative to the more primitive TCB subset from which it obtains
resources, then the scope of the covert channel analysis can be limited. An example of this
approach is the SeaView prototype.

SRI International developed the SeaView prototype multilevel RDBMS to validate the SeaView
theoretical model and to demonstrate that the prototype is suitable for engineering development
[Hsieh 93]. The design approach provides users with element-level labeling. SeaView constructs
multilevel relations as views over stored single-level relations. The single-level relations are stored
in files managed by an underlying multilevel operating system. Thus, individually labeled data
elements need not be stored in individually labeled storage objects. The SeaView approach allows
multilevel database operations to be decomposed into corresponding single-level operations on the
single-level relations. The decomposition is transparent to the user, who considers the multilevel
relations to be stored relations. Thus, the SeaView model extends entity and referential integrity to
multilevel relations. It also allows application dependent integrity rules to be defined on multilevel
relations; and it ensures that updates of multilevel relations are well defined. In addition, the
SeaView model constrains multilevel relations with polyinstantiation integrity, which specifies
consistency for polyinstantiated tuples and elements.

In the SeaView approach, the underlying architecture guards against covert channels during
enforcement of entity and referential integrity. This is because the DBMS instance operating on
behalf of a subject is untrusted with respect to the underlying operating system MAC policy (i.e.,
it can only read data with a security level dominated by the subject’s level and can only write data
with a security level dominating the subject’s level). SRI utilized Trusted Oracle OS MAC Mode,
which has been evaluated as a constrained TCB subset architecture [Oracle 94].

On the other hand, a secure DBMS can be built with MAC enforcement done in the DBMS, not
just the underlying operating system. In this approach, the DBMS will have the privilege to violate
the operating system’s MAC controls. With this architecture, called a trusted subject architecture,
the DBMS designer has to make a tradeoff between channel free enforcement of entity and
referential integrity constraints, or enforcement of the constraints in a manner which allows
selected channels. In the latter case, the constraint enforcement mechanism must be carefully
analyzed to make sure that the downward information flows are thoroughly understood and that
they are acceptable for the target environment or evaluation class. For example, Trusted Oracle7
DBMS MAC Mode (which uses the trusted subject architecture) was successfully evaluated at
Class B1 [Oracle 94]. In DBMS MAC Mode, entity and referential integrity can be enforced. An
audit event was added to Trusted Oracle7 to detect use of potential covert channels.



SECTION 5

SUMMARY

Entity integrity and referential integrity are two important integrity constraints that should be
enforced by the DBMS. While entity integrity is necessary for preserving correctness of data
within a relation, referential integrity is required for maintaining interrelation integrity in the
relational data model. In this document, these concepts have been extended to multilevel DBMSs.

The extension of the concept of referential integrity from single-level relations to multilevel
relations is not straightforward. This is because restrictions are needed to provide referential
integrity control in multilevel DBMSs without compromising secrecy. The basic requirement for
referential integrity is that each referencing foreign key value must have an identical target primary
key value in the referenced relation. An additional requirement for multilevel relations is that each
foreign key and primary key should be uniformly classified (i.e., all attributes included in a key
should have the same security level) and each foreign key dominates its referenced primary key.

From the discussion in the document, it can be concluded that enforcing referential integrity, when
the security level of the foreign key is equal to the security level of the referenced primary key, is
simple and without any ambiguity. All integrity rules apply in this case, whether the relations allow
polyinstantiation or not. When polyinstantiation is allowed, some method such as including the
security level of the primary and foreign key values as part of the key must be used to differentiate
references, and allow the referential integrity rules to be enforced.

Referential integrity completely fails when the security level of the foreign key does not dominate
the security level of the primary key. When the security level of the foreign key strictly dominates
the security level of the referenced primary key, some of the integrity rules for actions to be taken
upon deletion or modification of a key value can be applied without channels, with some
differences based on labeling granularity.

Inclusion of a mechanism which enforces integrity across security levels in Class B2 and above
DBMSs may not be feasible due to conflicts with the covert channel requirements. However, with
the successful evaluation of Trusted Oracle7 DBMS MAC Mode with an unmodified integrity
mechanism, precedence has been set for Class B1 DBMSs.
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